1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
* FILE: codec_wbs.c
* AUTHORS: Orion Hodson
*
* Copyright (c) 1998-2001 University College London
* All rights reserved.
*/
#ifndef HIDE_SOURCE_STRINGS
static const char cvsid[] =
"$Id: codec_wbs.c,v 1.18 2001/01/08 20:29:58 ucaccsp Exp $";
#endif /* HIDE_SOURCE_STRINGS */
#include "config_unix.h"
#include "config_win32.h"
#include "memory.h"
#include "util.h"
#include "debug.h"
#include "audio_types.h"
#include "codec_types.h"
#include "codec_wbs.h"
#include "cx_wbs.h"
static codec_format_t cs[] = {
{"WBS", "WBS-16K-Mono",
"Wide band speech coder. Implemented by Markus Iken, University College London.",
/* NB payload 109 for backward compatibility */
109, WBS_STATE_SIZE, WBS_UNIT_SIZE,
{DEV_S16, 16000, 16, 1, 160 * BYTES_PER_SAMPLE}
}
};
#define WBS_NUM_FORMATS sizeof(cs)/sizeof(codec_format_t)
#define WBS_NUM_LAYERS 2
uint16_t
wbs_get_formats_count()
{
return (uint16_t)WBS_NUM_FORMATS;
}
const codec_format_t *
wbs_get_format(uint16_t idx)
{
assert(idx < WBS_NUM_FORMATS);
return &cs[idx];
}
typedef struct s_wbs_state {
wbs_state_struct state;
double qmf_lo[16];
double qmf_hi[16];
short ns; /* Noise shaping state */
} wbs_t;
int
wbs_state_create(uint16_t idx, u_char **s)
{
wbs_t *st;
int sz;
if (idx < WBS_NUM_FORMATS) {
sz = sizeof(wbs_t);
st = (wbs_t*)xmalloc(sz);
if (st) {
memset(st, 0, sz);
wbs_state_init(&st->state,
st->qmf_lo,
st->qmf_hi,
&st->ns);
*s = (u_char*)st;
return sz;
}
}
*s = NULL;
return 0;
}
void
wbs_state_destroy(uint16_t idx, u_char **s)
{
UNUSED(idx);
assert(idx < WBS_NUM_FORMATS);
xfree(*s);
*s = (u_char*)NULL;
}
int
wbs_encoder(uint16_t idx, u_char *encoder_state, sample *inbuf, coded_unit *c)
{
subband_struct SubBandData;
wbs_t *wsp;
uint8_t i;
assert(encoder_state);
assert(inbuf);
assert(idx < WBS_NUM_FORMATS);
UNUSED(idx);
/* Transfer state and fix ordering */
c->state = (u_char*)block_alloc(WBS_STATE_SIZE);
c->state_len = WBS_STATE_SIZE;
c->data = (u_char*)block_alloc(WBS_UNIT_SIZE);
c->data_len = WBS_UNIT_SIZE;
wsp = (wbs_t*)encoder_state;
memcpy(c->state, &wsp->state, WBS_STATE_SIZE);
for(i=0; i<WBS_STATE_SIZE/4; i++) {
*((uint32_t *)c->state + i) = htonl(*((uint32_t *)c->state+i));
}
QMF(inbuf, &SubBandData, wsp->qmf_lo, wsp->qmf_hi);
LowEnc(SubBandData.Low, c->data, wsp->state.low, &wsp->ns);
HighEnc(SubBandData.High, c->data, wsp->state.hi);
return c->data_len;
}
int
wbs_decoder(uint16_t idx, u_char *decoder_state, coded_unit *c, sample *data)
{
subband_struct SubBandData;
wbs_t *wsp = (wbs_t *)decoder_state;
uint8_t i;
assert(decoder_state);
assert(c);
assert(data);
assert(idx < WBS_NUM_FORMATS);
if (c->state_len > 0) {
assert(c->state_len == WBS_STATE_SIZE);
for(i=0; i<WBS_STATE_SIZE/4; i++) {
*((uint32_t *)c->state + i) = ntohl(*((uint32_t *)c->state+i));
}
memcpy(&wsp->state, c->state, WBS_STATE_SIZE);
}
LowDec(c->data, SubBandData.Low, wsp->state.low, &wsp->ns);
HighDec(c->data, SubBandData.High, wsp->state.hi);
deQMF(&SubBandData, data, wsp->qmf_lo, wsp->qmf_hi);
return 160; /* Only does this size */
}
uint8_t
wbs_max_layers(void)
{
return (uint8_t)WBS_NUM_LAYERS;
}
int wbs_get_layer (uint16_t idx, coded_unit *in, uint8_t layer, uint16_t *markers, coded_unit *out)
{
int i, j;
u_char base[WBS_UNIT_SIZE];
u_char enh[WBS_UNIT_SIZE];
u_char tmp1, tmp2, tmp3, tmp4;
u_char tmp_enh;
u_char tmp_base[3];
coded_unit *tmp_out;
UNUSED(idx);
if(layer >= WBS_NUM_LAYERS) {
debug_msg("Too many layers: WBS only supports %d\n", WBS_NUM_LAYERS);
return 0;
}
/* don't care about state */
out->state = NULL;
out->state_len = 0;
tmp_out = (coded_unit*)block_alloc(sizeof(coded_unit));
tmp_out->data = (u_char*)block_alloc(in->data_len);
tmp_out->data_len = in->data_len;
for (i=0; i<WBS_UNIT_SIZE; i++) {
tmp1 = tmp2 = tmp3 = tmp4 = *(in->data+i);
base[i] = (u_char)(((tmp1 & 0x1e) >> 1) | ((tmp2 & 0xc0) >> 2));
enh[i] = (u_char)(((tmp3 & 0x20) << 2) | ((tmp4 & 0x01) << 6));
}
/* Need to shift everything about so that it *
* fits nicely into bytes. At present enh layer *
* occupies 2 bits and base layer 6 bits. So 4 *
* units will fit into 4 bytes (1 enh, 3 base). *
* There must, of course be an easier way to do *
* this. */
j = 0;
for (i=0; i<WBS_UNIT_SIZE; i+=4) {
tmp_enh = tmp_base[0] = tmp_base[1] = tmp_base[2] = 0;
tmp_enh = (u_char)(((enh[i] & 0xc0) >> 6) | ((enh[i+1] & 0xc0) >> 4) | ((enh[i+2] & 0xc0) >> 2) | (enh[i+3] & 0xc0));
tmp1 = tmp2 = base[i+1];
tmp3 = tmp4 = base[i+2];
tmp_base[0] = (u_char)((base[i] & 0x3f) | ((tmp1 & 0x03) << 6));
tmp_base[1] = (u_char)(((tmp2 & 0x3c) >> 2) | ((tmp3 & 0x0f) << 4));
tmp_base[2] = (u_char)(((tmp4 & 0x30) >> 4) | ((base[i+3] & 0x3f) << 2));
switch(layer) {
case 0:
*(tmp_out->data + j) = tmp_base[0];
j++;
*(tmp_out->data + j) = tmp_base[1];
j++;
*(tmp_out->data + j) = tmp_base[2];
j++;
break;
case 1:
*(tmp_out->data + j) = tmp_enh;
j++;
break;
}
}
/* this should be made less specific */
switch(layer) {
case 0: markers[0] = 0;
break;
case 1: markers[1] = 3*WBS_UNIT_SIZE/4;
break;
}
/* Now that we know that out->data_len = j, we can create *
* a coded_unit of the correct length and return it */
out->data = (u_char*)block_alloc(j);
out->data_len = j;
memcpy(out->data, tmp_out->data, j);
/* Delete tmp_out before exiting */
block_free(tmp_out->data, tmp_out->data_len);
tmp_out->data = 0;
tmp_out->data_len = 0;
assert(tmp_out->data_len == 0);
block_free(tmp_out, sizeof(coded_unit));
xmemchk();
return out->data_len;
}
int wbs_combine_layer (uint16_t idx, coded_unit *in, coded_unit *out, uint8_t nelem, uint16_t *markers)
{
int i, j, k, marker;
u_char cont_layer[WBS_UNIT_SIZE];
u_char tmp1, tmp2, tmp3, tmp4;
assert(in);
UNUSED(idx);
UNUSED(nelem);
UNUSED(markers);
/* By the time we get here we assume that the *
* data is in one contiguous block again, and *
* that markers indicates where the layers are *
* divided. If the enhancement layer is lost, *
* it should have been replaced with zeros. *
* Thus all that is needed is to extract the *
* layers and reshuffle everything back *
* together again. */
out->data_len = in->data_len;
out->data = (u_char*)block_alloc(in->data_len);
marker = 3*WBS_UNIT_SIZE/4; /* ie 60 for base, 20 for enh */
j = k = 0;
for (i=0; i<WBS_UNIT_SIZE; i+=4) {
tmp1 = *(in->data + j);
tmp2 = *(in->data + j + 1);
tmp3 = *(in->data + j + 2);
tmp4 = *(in->data + k + marker);
cont_layer[i] = (u_char)((tmp1 & 0x3f) | ((tmp4 & 0x03) << 6));
tmp1 = *(in->data + j);
tmp4 = *(in->data + k + marker);
cont_layer[i+1] = (u_char)(((tmp1 & 0xc0) >> 6) | ((tmp2 & 0x0f) << 2) | ((tmp4 & 0x0c) << 4));
tmp1 = *(in->data + j);
tmp2 = *(in->data + j + 1);
tmp4 = *(in->data + k + marker);
cont_layer[i+2] = (u_char)(((tmp2 & 0xf0) >> 4) | ((tmp3 & 0x03) << 4) | ((tmp4 & 0x30) << 2));
tmp3 = *(in->data + j + 2);
tmp4 = *(in->data + k + marker);
cont_layer[i+3] = (u_char)(((tmp3 & 0xfc) >> 2) | (tmp4 & 0xc0));
j+=3;
k++;
}
for (i=0; i<WBS_UNIT_SIZE; i++) {
tmp1 = tmp2 = tmp3 = tmp4 = cont_layer[i];
*(out->data + i) = (u_char)(((tmp1 & 0x80) >> 2) | ((tmp2 & 0x40) >> 6) | ((tmp3 & 0x30) << 2) | ((tmp4 & 0x0f) << 1));
}
if (in->state_len > 0) {
assert(in->state_len == WBS_STATE_SIZE);
out->state_len = WBS_STATE_SIZE;
out->state = (u_char*)block_alloc(WBS_STATE_SIZE);
memcpy(out->state, in->state, WBS_STATE_SIZE);
}
xmemchk();
return (out->data_len);
}
|