File: parameters.c

package info (click to toggle)
rat 4.2.22-2.2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,896 kB
  • ctags: 3,717
  • sloc: ansic: 36,542; tcl: 2,740; sh: 2,675; makefile: 295
file content (485 lines) | stat: -rw-r--r-- 11,983 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
 *	FILE:    parameters.c
 *	PROGRAM: RAT
 *	AUTHOR:	 O. Hodson
 *
 * Copyright (c) 1998-2001 University College London
 * All rights reserved.
 */
 
#ifndef HIDE_SOURCE_STRINGS
static const char cvsid[] = 
	"$Id: parameters.c,v 1.53 2001/01/08 20:30:04 ucaccsp Exp $";
#endif /* HIDE_SOURCE_STRINGS */

#include "config_unix.h"
#include "config_win32.h"
#include "debug.h"
#include "memory.h"
#include "math.h"
#include "auddev.h"
#include "transmit.h"
#include "session.h"
#include "parameters.h"

#define SD_MAX_CHANNELS  5
#define Q3_MAX 4096
#define L16TOQ3(x) ((x)>>3)
#define Q3TOL16(x) ((x)<<3)
#define MAX_VU 255.0

static u_char vu_tbl[4096];

void
vu_table_init()
{
        int i;
        vu_tbl[0] = 0;
        for (i=1; i<Q3_MAX; i++) {
                vu_tbl[i] = (u_char)(255.0 * (2.0 / (1.0 + exp(-Q3TOL16(i)*1.0/1000)) - 1));
        }
}

int 
lin2vu(uint16_t energy, int range, int io_dir)
{
        static double v[2];
        double gain;

        gain = vu_tbl[L16TOQ3(energy)]/MAX_VU;

        v[io_dir] = max(v[io_dir] - 0.1, 0.0);

        if (gain > v[io_dir]) {
                v[io_dir] += 0.80 * (gain - v[io_dir]);
        } 

        return (int)(v[io_dir] * range);
} 

/* The silence detection algorithm is: 
 *
 *    Everytime someone adjusts volume, or starts talking, use
 *    a short parole period to calculate reasonable threshold.
 *
 *    This assumes that person is not talking as they adjust the
 *    volume, or click on start talking button.  This can be false
 *    when the source is music, or the speaker is a politician, 
 *    project leader, etc...
 */

/* snapshot in ms to adjust silence threshold */
#define SD_PAROLE_PERIOD 100
#define SD_LOWER_COUNT  3
#define SD_RAISE_COUNT  10

typedef struct s_sd {
        uint32_t parole_period;
        int32_t tot, tot_sq;
        uint32_t history;
        int32_t thresh;
        int32_t m;
        double mds;
        double ltmds;
        uint32_t lt_cnt;  /* Number intervals less than threshold        */
        uint32_t lt_max;  /* Maximum energy of those less than threshold */
        uint32_t gt_cnt;  /* Number intervals more than threshold        */
        uint32_t gt_min;  /* Minimum energy of those less than threshold */
        uint32_t peak;
        uint32_t eval_period;
        uint32_t eval_cnt;
        uint32_t cnt;
} sd_t;

sd_t *
sd_init(uint16_t blk_dur, uint16_t freq)
{
	sd_t *s = (sd_t *)xmalloc(sizeof(sd_t));
        s->parole_period = SD_PAROLE_PERIOD * freq / (blk_dur*1000) + 1;
        s->eval_period   = s->parole_period;
        sd_reset(s);
	return (s);
}

void
sd_reset(sd_t *s)
{
        uint32_t tmp = s->parole_period;
        memset(s, 0, sizeof(sd_t));
        s->parole_period = tmp;
        s->eval_period   = 4 * tmp;
        s->gt_min = 0xffff;
}

void
sd_destroy(sd_t *s)
{
        xfree(s);
}

#define SD_RES 8

/* Returns 1 if silence detected, 0 otherwise */
int
sd(sd_t *s, uint16_t energy)
{
        energy = vu_tbl[L16TOQ3(energy)];

        if (s->cnt < s->parole_period) {
                if (energy > s->thresh) {
                        s->thresh = energy + (energy - s->thresh) / 2;
                } else {
                        s->thresh = (energy + s->thresh)/2 + 1;
                }
                s->thresh = max(s->thresh, energy);
                s->cnt++;
                return (energy < s->thresh);
        }

        if (energy > s->thresh) {
                s->gt_min = min(s->gt_min, energy);
                s->gt_cnt++;
        } else if (energy < s->thresh) {
                s->lt_max = max(s->lt_max, energy);
                s->lt_cnt++;
        }

        if (s->eval_cnt == s->eval_period) {
                if (s->lt_cnt == s->eval_period) {
                        /* Every block had lower energy */
                        s->thresh = (s->thresh + s->lt_max) / 2 + 1;
                } else if (s->gt_cnt == s->eval_period) {
                        /* Every block had greater energy */
                        s->thresh++;
                } else if (s->lt_cnt > s->gt_cnt) {
                        /* We are skimming threshold ? */
                        s->thresh++;
                }
                s->eval_cnt = 0;
                s->lt_max = 0;
                s->lt_cnt = 0;
                s->gt_min = 0xffff;
                s->gt_cnt = 0;
        }
        s->eval_cnt ++;
        return (energy < s->thresh);
}

/* Manual silence detector */

typedef struct s_manual_sd {
        double   sltmean;
        uint16_t thresh;
        double   alpha; /* EWA constant */
} manual_sd_t;

manual_sd_t*
manual_sd_init(uint16_t blk_dur, uint16_t freq, uint16_t thresh)
{
        manual_sd_t *m;
        uint16_t     blocks_per_sec;
        
        m = (manual_sd_t*)xmalloc(sizeof(manual_sd_t));
        if (m != NULL) {
                m->sltmean = 0;
                m->thresh  = thresh;
                /* Calculate time constant should = 1/8 when blocks_per_sec
                 * is 50 (a la VAT silence detection algorithm).
                 */
                blocks_per_sec = freq / blk_dur;
                m->alpha = pow(1.0 / 8.0, blocks_per_sec / 50.0);
        }

        return m;
}

void
manual_sd_destroy(manual_sd_t *m)
{
        xfree(m);
}

/* Returns 1 if silence detected, 0 otherwise */
int
manual_sd(manual_sd_t *m, uint16_t energy, uint16_t max)
{
        double delta;
        m->sltmean += (energy - m->sltmean) * m->alpha;
        delta = max - m->sltmean - m->thresh;
        return delta < 0;
}

void
manual_sd_set_thresh(manual_sd_t *m, uint16_t thresh)
{
        m->thresh = thresh;
}

/* Voice activity detection */

typedef struct {
        u_char sig;
        u_char pre;
        u_char post;
} vad_limit_t;

typedef struct s_vad {
        /* limits */
        vad_limit_t limit[2];
        uint32_t tick;
        uint32_t spurt_cnt;
        /* state */
        u_char state;
        u_char sig_cnt;
        u_char post_cnt;
} vad_t;

vad_t *
vad_create(uint16_t blockdur, uint16_t freq)
{
        vad_t *v = (vad_t*)xmalloc(sizeof(vad_t));
        memset(v,0,sizeof(vad_t));
        vad_config(v, blockdur, freq);
        return v;
}

const char*
sd_name(int silence_detector)
{
        switch(silence_detector) {
        case SILENCE_DETECTION_AUTO:
                return "Automatic";
        case SILENCE_DETECTION_MANUAL:
                return "Manual";
        }
        return "Off";
}

int
sd_name_to_type(const char *name)
{
        switch(tolower(name[0])) {
        case 'a':
                return SILENCE_DETECTION_AUTO;
        case 'm':
                return SILENCE_DETECTION_MANUAL;
        }
        return SILENCE_DETECTION_OFF;
}

/* Duration of limits in ms */
#define VAD_SIG_LECT     40
#define VAD_SIG_CONF     60
#define VAD_PRE_LECT     60
#define VAD_PRE_CONF     20
#define VAD_POST_LECT   200
#define VAD_POST_CONF   200

void
vad_config(vad_t *v, uint16_t blockdur, uint16_t freq)
{
        uint32_t time_ms;

        assert(blockdur != 0);
        assert(freq     != 0);

        time_ms = (blockdur * 1000) / freq;

        v->limit[VAD_MODE_LECT].sig  = (u_char)(VAD_SIG_LECT  / time_ms); 
        v->limit[VAD_MODE_LECT].pre  = (u_char)(VAD_PRE_LECT  / time_ms);
        v->limit[VAD_MODE_LECT].post = (u_char)(VAD_POST_LECT / time_ms);

        v->limit[VAD_MODE_CONF].sig  = (u_char)(VAD_SIG_CONF  / time_ms); 
        v->limit[VAD_MODE_CONF].pre  = (u_char)(VAD_PRE_CONF  / time_ms);
        v->limit[VAD_MODE_CONF].post = (u_char)(VAD_POST_CONF / time_ms);
}

void
vad_destroy(vad_t *v)
{
        assert (v != NULL);
        xfree(v);
}

#define VAD_SILENT        0
#define VAD_SPURT         1

uint16_t
vad_to_get(vad_t *v, u_char silence, u_char mode)
{
        vad_limit_t *l = &v->limit[mode];

        assert(mode == VAD_MODE_LECT || mode == VAD_MODE_CONF);

        v->tick++;

        switch (v->state) {
        case VAD_SILENT:
                if (silence == FALSE) {
                        v->sig_cnt++;
                        if (v->sig_cnt == l->sig) {
                                v->state = VAD_SPURT;
                                v->spurt_cnt++;
                                v->post_cnt = 0;
                                v->sig_cnt  = 0;
                                return l->pre;
			}
                } else {
                        v->sig_cnt = 0;
                }
                return 0;
                break;
        case VAD_SPURT:
                if (silence == FALSE) {
                        v->post_cnt = 0;
                        return 1;
                } else {
                        if (++v->post_cnt < l->post) {
                                return 1;
                        } else {
                                v->sig_cnt  = 0;
                                v->post_cnt = 0;
                                v->state = VAD_SILENT;
                                return 0;
                        }
                }
                break;
        }
        return 0; /* never arrives here */
}

uint16_t
vad_max_could_get(vad_t *v)
{
        if (v->state == VAD_SILENT) {
                return v->limit[VAD_MODE_LECT].pre;
        } else {
                return 1;
        }
}

void
vad_reset(vad_t* v)
{
        v->state    = VAD_SILENT;
        v->sig_cnt  = 0;
        v->post_cnt = 0;
}

u_char
vad_in_talkspurt(vad_t *v)
{
        return (v->state == VAD_SPURT) ? TRUE : FALSE;
}

uint32_t
vad_talkspurt_no(vad_t *v)
{
        return v->spurt_cnt;
}

void
vad_dump(vad_t *v)
{
        debug_msg("vad tick %05d state %d sig %d post %d\n",
                v->tick,
                v->state,
                v->sig_cnt,
                v->post_cnt
                );
}

#define AGC_HISTORY_LEN      3
#define AGC_PEAK_LOWER    5000
#define AGC_PEAK_UPPER   14000

typedef struct s_agc {
        uint16_t peak;
        uint16_t cnt;
        uint32_t spurtno;
        u_char  new_gain;
        u_char  change;
        session_t *sp; /* this is unpleasant to have and i wrote it! */
} agc_t;

agc_t *
agc_create(session_t *sp)
{
        agc_t *a = (agc_t*)xmalloc(sizeof(agc_t));
        memset(a,0,sizeof(agc_t));
        a->spurtno = 0xff;
        a->sp      = sp;
        return a;
}

void
agc_destroy(agc_t *a)
{
        xfree(a);
}

void 
agc_reset(agc_t *a)
{
        a->peak    = 0;
        a->cnt     = 0;
        a->new_gain = 0;
        a->change  = FALSE;
}

/* This limit stops agc oscillating around close values, which cause 
 * silence suppression recallibration to occur too often [oth].
 */

#define AGC_GAIN_SIG 5

static void 
agc_consider(agc_t *a)
{
        int32_t gain;

        a->change = FALSE;
        if (a->peak > AGC_PEAK_UPPER) {
                gain        = audio_get_igain(a->sp->audio_device);
                a->new_gain = min(gain * AGC_PEAK_UPPER / a->peak, 99);
                if ((gain - a->new_gain) > AGC_GAIN_SIG) {
                        a->change   = TRUE;
                }
        } else if (a->peak < AGC_PEAK_LOWER) {
                gain        = audio_get_igain(a->sp->audio_device);
                a->new_gain = min(gain * AGC_PEAK_LOWER / a->peak, 99);
                if ((a->new_gain - gain) > AGC_GAIN_SIG) {
                        a->change   = TRUE;
                }
        }
}

void
agc_update(agc_t *a, uint16_t energy, uint32_t spurtno)
{
        a->peak = max(a->peak, energy);
        if (a->spurtno != spurtno) {
                a->spurtno = spurtno;
                a->cnt++;
                if (a->cnt == AGC_HISTORY_LEN) {
                        agc_consider(a);
                        a->cnt = 0;
                        return;
                }
        }
}

u_char 
agc_apply_changes(agc_t *a)
{
        if (a->change == TRUE) {
                audio_set_igain(a->sp->audio_device, a->new_gain);
                tx_igain_update(a->sp->tb);
                agc_reset(a);
                a->change = FALSE;
                return TRUE;
        }
        return FALSE;
}