File: render_3D.c

package info (click to toggle)
rat 4.2.22-2.2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,896 kB
  • ctags: 3,717
  • sloc: ansic: 36,542; tcl: 2,740; sh: 2,675; makefile: 295
file content (433 lines) | stat: -rw-r--r-- 15,564 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/*
 * FILE:    render_3D.c
 * PROGRAM: RAT
 * AUTHORS: Marcus Iken
 * MODS:    Orion Hodson
 *
 * Copyright (c) 1998-2001 University College London
 * All rights reserved.
 */
 
#ifndef HIDE_SOURCE_STRINGS
static const char cvsid[] = 
	"$Id: render_3D.c,v 1.42 2002/03/15 18:01:46 ucacoxh Exp $";
#endif /* HIDE_SOURCE_STRINGS */

#include "config_unix.h"
#include "config_win32.h"
#include <math.h>
#include "audio_types.h"
#include "codec_types.h"
#include "memory.h"
#include "util.h"
#include "debug.h"
#include "render_3D.h"

#define MAX_RESPONSE_LENGTH 32
#define MIN_RESPONSE_LENGTH 8
#define DEFAULT_RESPONSE_LENGTH 32
#define LOWER_AZIMUTH -90
#define UPPER_AZIMUTH  90
#define IDENTITY_FILTER 0
/* A guess...*/
#define SAMPLE_BUFFER_SAMPLES 2048

void convolve(sample  *signal, 
              sample  *answer, 
              double *overlap, 
              double *response, 
              int response_length, 
              int signal_length);

typedef struct s_3d_filter {
        char   name[16];
        double elem[32];
} three_d_filter_t;

static three_d_filter_t base_filters[] = {
        {"Identity", 
         { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
        },
        {"HRTF", 
         { 0.063113, -0.107530, 0.315168, 0.015218, -0.300535, 1.000000, 0.359786, -0.601145, -0.676947,
           -0.167251, 0.203305, 0.261645, 0.059649, 0.026661, -0.011648, -0.335958, -0.276208, 0.037719,
           0.154546, 0.141399, -0.000902, -0.031835, -0.098318, -0.058072, -0.033449, 0.030325, 0.041670,
           -0.001182, -0.019692, -0.031318, -0.028427, -0.003031 }
        },
        {"Echo", 
         { 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
           0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
           0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
           0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }
        }
};

#define NUM_FILTERS (sizeof(base_filters) / sizeof(three_d_filter_t))

int
render_3D_filter_get_count()
{
        return NUM_FILTERS;
}

char *
render_3D_filter_get_name(int id)
{
        if (id >= 0 && id < (signed)NUM_FILTERS) return base_filters[id].name;
        return base_filters[IDENTITY_FILTER].name;
}

int
render_3D_filter_get_by_name(char *name)
{
        int i;
        for(i = 0; i < (signed)NUM_FILTERS; i++) {
                if (!strcasecmp(name, base_filters[i].name)) return i;
        }
        return IDENTITY_FILTER;
}

/* At the present time there is only 1 possible filter length.  At a 
 * later date it may be desirable to have shorter filter lengths to
 * reduce processing load and a suitable length selection algorithm.
 */

int
render_3D_filter_get_lengths_count()
{
        return 1;
}

int
render_3D_filter_get_length(int idx)
{
        UNUSED(idx);
        return DEFAULT_RESPONSE_LENGTH;
}

int
render_3D_filter_get_lower_azimuth()
{
        return LOWER_AZIMUTH;
}

int
render_3D_filter_get_upper_azimuth()
{
        return UPPER_AZIMUTH;
}

#define TMPBUFSIZE 132

typedef struct s_render_3D_dbentry {
        u_char   filter_number;                       /* Index number of original filter */
        short    azimuth;                             /* lateral angle of sound source */
        short    delay;                               /* based on interaural time difference (ITD); derived from 'azimuth' */
        double   attenuation;                         /* based on interaural intensity difference (IID); derived from 'azimuth' */
        sample   ipsi_buf[SAMPLE_BUFFER_SAMPLES];     /* buffer for ipsi-lateral channel before merging into stereo buffer */
        sample   contra_buf[SAMPLE_BUFFER_SAMPLES];   /* buffer for contra-lateral channel before merging into stereo buffer */
        sample   tmp_buf[TMPBUFSIZE];                 /* temporary storage for swapping samples */
        sample   excess_buf[TMPBUFSIZE];              /* buffer for excess samples due to delay */
        double   filter[MAX_RESPONSE_LENGTH];         /* filter used for convolution */
        double   overlap_buf[MAX_RESPONSE_LENGTH];    /* overlap buffer due to filter operation on the mono signal */
        int      response_length;
} render_3D_dbentry;

#define UNIQUE_ANGLES 32
/* This function calculates initial azimuth for user */
static int
render_3D_idx2azimuth(int idx)
{
        int delta, r, tick;

        delta = render_3D_filter_get_upper_azimuth() / 2;
        
        idx  = idx % UNIQUE_ANGLES;
        tick = UNIQUE_ANGLES - 1;
        r    = 0;
        do {
                r += (2 * (idx & 1) - 1) * delta;
                delta >>= 1;
                idx   >>= 1;
                tick  >>= 1;
        } while (tick);
        return r;
}

static int n_users_created;

render_3D_dbentry *
render_3D_init(int sampling_rate)
{
        int               azimuth, length;
        int               default_filter_num;
        char              *default_filter_name;
        render_3D_dbentry *render_3D_data;

        azimuth = render_3D_idx2azimuth(n_users_created);
        length  = DEFAULT_RESPONSE_LENGTH;

        default_filter_name = "HRTF";
        default_filter_num  = render_3D_filter_get_by_name(default_filter_name);

        render_3D_data = (render_3D_dbentry *) xmalloc(sizeof(render_3D_dbentry));
        memset(render_3D_data, 0, sizeof(render_3D_dbentry));

        render_3D_set_parameters(render_3D_data, sampling_rate, azimuth, default_filter_num, length);

#ifdef DEBUG_3D
        {
                int               i;
                fprintf(stdout, "\tdelay:\t%d\n", render_3D_data->delay);
                fprintf(stdout, "\tattenuation:\t%f\n", render_3D_data->attenuation);
                for (i=0; i<length; i++) {
                        fprintf(stdout, "\t%f\n", render_3D_data->filter[i]);
                }
        }
#endif /* DEBUG */

        n_users_created++;

        return render_3D_data;
}

void
render_3D_free(render_3D_dbentry **data)
{
        assert(*data);
        xfree(*data);
        *data = NULL;
}

void
render_3D_set_parameters(struct s_render_3D_dbentry *p_3D_data, int sampling_rate, int azimuth, int filter_number, int length)
{
        int i;
        double aux;
        double d_time;         /* delay in seconds. auxiliary to calculate delay in samples. */
        double d_intensity;    /* interaural intensity difference 0.0 <d_intensity < 1.0 */

        p_3D_data->azimuth = azimuth;

        /* derive interaural time difference from azimuth */
        aux= azimuth * 0.017453203;                                /* conversion into radians */
        d_time = 2.72727 * sin(aux);
        p_3D_data->delay = abs((int) (sampling_rate * d_time / 1000));


        while (p_3D_data->delay >= TMPBUFSIZE) {
                debug_msg("Delay too big for temp bufs reducing %d -> %d\n",
                          p_3D_data->delay,
                          TMPBUFSIZE - 1);
                /* Shift 2 degrees in */
                p_3D_data->azimuth -= 2 * p_3D_data->azimuth/abs(p_3D_data->azimuth);
                aux                 = p_3D_data->azimuth * 0.017453203;
                d_time              = 2.72727 * sin(aux);
                p_3D_data->delay    = abs((int) (sampling_rate * d_time / 1000));
        }

        /* derive interaural intensity difference from azimuth */
        d_intensity = 1.0 - (0.3 * fabs(sin(aux)));
        p_3D_data->attenuation = d_intensity;

        /* fill up participant's response filter */
        p_3D_data->response_length = length;

        assert((unsigned)filter_number < NUM_FILTERS);

        p_3D_data->filter_number = filter_number;

        /* right now it's only a copying of values, later decimation */
        for (i=0; i<MAX_RESPONSE_LENGTH; i++) {
                p_3D_data->filter[i] = base_filters[filter_number].elem[i];
        }
}

void
render_3D_get_parameters(struct s_render_3D_dbentry *p_3D_data, int *azimuth, int *filter_type, int *filter_length)
{
        *azimuth       = p_3D_data->azimuth;
        *filter_type   = p_3D_data->filter_number;
        *filter_length = p_3D_data->response_length;
}

/*=============================================================================================
  convolve()   time-domain, on-the-fly convolution

  Arguments:  signal           pointer to signal vector ('input')
              answer           pointer to answer vector (answer of the system)
              overlap          pointer to the overlap buffer
              response         pointer to coefficients vector (transfer function of the system)
              response_length  number of coefficients
              signal_length    number of values in 'signal'
=============================================================================================*/
void
convolve(sample *signal, sample *answer, double *overlap, double *response, int response_length, int signal_length)
{
        sample  *signal_rptr, *answer_rptr;       /* running pointers within signal and answer vector */
        int     i, j;                             /* loop counters */
        double  *response_rptr;                   /* running pointer within response vector */
        double  *overlap_rptr_1, *overlap_rptr_2; /* running pointer within the overlap buffer */
        double  current;                          /* currently calculated answer value */

        /* Initialise the running pointers for 'signal' and 'answer'. */
        signal_rptr = signal;
        answer_rptr = answer;
        /*  Loop over the length of the signal vector. */
        for(i = 0; i < signal_length ;i++) {
                overlap[response_length-1] = *signal_rptr++;
                response_rptr = response;
                overlap_rptr_1 = overlap_rptr_2 = overlap;
                current = *overlap_rptr_1++ * *response_rptr++;
                /*  Use convolution method for computation */
                for(j = 1; j < response_length ; j++) {
                        *overlap_rptr_2++ = *overlap_rptr_1;
                        current += *overlap_rptr_1++ * *response_rptr++;
                }
                /* Clamping */
                if (current > 32767.0) {
                        debug_msg("clipping %f\n", current);
                        current = 32767.0;
                } else if (current < -32767.0) {
                        debug_msg("clipping %f\n", current);
                        current = -32767.0;
                }
                /* store 'current' in answer vector. */
                *answer_rptr++ = (short)current;
        }
}

/* RAT specific */

#include "codec_types.h"
#include "codec.h"

void
render_3D(render_3D_dbentry *p_3D_data, coded_unit *in, coded_unit *out)
{
        int      i;
        size_t   n_bytes;    /* number of bytes in unspliced (mono!) buffer */
        sample   *proc_buf;
        sample   *mono_raw = NULL, *mono_filtered;  /* auxiliary buffers in case of stereo */
        int      mono_buf_len = 0; /* Mono buffer length in samples */
        uint16_t n_channels;
	uint32_t n_rate;

        assert(codec_is_native_coding(in->id));

        codec_get_native_info(in->id, &n_rate, &n_channels);

        assert(out->state   == NULL);
        assert(out->data    == NULL);
        assert(in->data     != NULL);
        assert(in->data_len != 0);

        /* Filtering operation needs mono buffer,
         * output is always stereo
         */
        
        assert(n_channels == 1 || n_channels == 2);

        switch(n_channels) {
        case 1:
                mono_buf_len  = in->data_len / sizeof(sample);
                mono_raw      = (sample*)in->data;
                out->id       = codec_get_native_coding(n_rate, 2);
                out->data     = (u_char*)block_alloc(in->data_len * 2);
                out->data_len = in->data_len * 2;
                break;
        case 2:
                mono_buf_len  = in->data_len / (n_channels * sizeof(sample));
                mono_raw      = (sample*)block_alloc(mono_buf_len * sizeof(sample));
                out->id       = in->id;
                out->data     = (u_char*)block_alloc(in->data_len);
                out->data_len = in->data_len;
                /* Convert stereo input to mono input */
                {
                        sample *s, *d;
                        int32_t   tmp,i,j;
                        s  = (sample*)in->data;
                        d  = mono_raw;

                        for(i = j = 0; j < mono_buf_len; j++) {
                                tmp = s[i] + s[i+1];
                                d[j] = (sample)(tmp / 2);
                                i += 2;
                        }
                }
                break;
        }

        proc_buf      = (sample*)out->data;
        mono_filtered = (sample*)block_alloc(mono_buf_len * sizeof(sample));

        /* EXTERNALISATION */
        convolve(mono_raw, 
                 mono_filtered, 
                 p_3D_data->overlap_buf, 
                 p_3D_data->filter, 
                 p_3D_data->response_length, 
                 mono_buf_len);
        
        /* LATERALISATION */

        /* mono_filtered is input, and el->native_data[el->native_count-1] is the output (stereo). */
        /* 'n_samples' is number of samples in _stereo_ buffer */
        n_bytes = mono_buf_len * sizeof(sample);

        /* splice into two channels: ipsilateral and contralateral. */
        memcpy(p_3D_data->ipsi_buf, 
               mono_filtered, 
               n_bytes);
        memcpy(p_3D_data->contra_buf, 
               mono_filtered, 
               n_bytes);

        /* apply IID to contralateral buffer. */
        for (i=0; i < mono_buf_len; i++) {
                p_3D_data->contra_buf[i] = (short)((double)p_3D_data->contra_buf[i]*p_3D_data->attenuation);
        }

        /* apply ITD to contralateral buffer: delay mechanisam. */
        if (p_3D_data->delay >= mono_buf_len) {
                debug_msg("Delay too big shifting %d -> %d\n",
                          p_3D_data->delay,
                          mono_buf_len);
                p_3D_data->delay = mono_buf_len - 1;
        } 

        memcpy(p_3D_data->tmp_buf, 
               p_3D_data->contra_buf + mono_buf_len - p_3D_data->delay, 
               p_3D_data->delay*sizeof(sample));
        memmove(p_3D_data->contra_buf + p_3D_data->delay, 
                p_3D_data->contra_buf, 
                (mono_buf_len - p_3D_data->delay) * sizeof(sample));
        memcpy(p_3D_data->contra_buf, 
               p_3D_data->excess_buf, 
               p_3D_data->delay * sizeof(sample));
        memcpy(p_3D_data->excess_buf, 
               p_3D_data->tmp_buf, 
               p_3D_data->delay * sizeof(sample));
        
        /* Merge ipsi- and contralateral buffers into proc_buf. */
        if (p_3D_data->azimuth > 0) {
                for (i=0; i<mono_buf_len; i++) {
                        proc_buf[2*i]   = p_3D_data->ipsi_buf[i];
                        proc_buf[2*i+1] = p_3D_data->contra_buf[i];
                }
        } else if (p_3D_data->azimuth <= 0) {
                for (i=0; i<mono_buf_len; i++) {
                        proc_buf[2*i]   = p_3D_data->contra_buf[i];
                        proc_buf[2*i+1] = p_3D_data->ipsi_buf[i];
                }
        }

        if (mono_raw != (sample*)in->data) {
                block_free(mono_raw, n_bytes);
        }
        block_free(mono_filtered, n_bytes);
        xmemchk();
        block_check((char*)in->data);
        block_check((char*)out->data);
}