1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
/*
* FILE: transmit.c
* PROGRAM: RAT
* AUTHOR: Orion Hodson / Isidor Kouvelas
* MODIFIED: Colin Perkins
*
* Copyright (c) 1995-2001 University College London
* All rights reserved.
*/
#ifndef HIDE_SOURCE_STRINGS
static const char cvsid[] =
"$Id: transmit.c,v 1.131 2002/03/15 17:57:19 ucacoxh Exp $";
#endif /* HIDE_SOURCE_STRINGS */
#include "config_unix.h"
#include "config_win32.h"
#include "memory.h"
#include "debug.h"
#include "audio_types.h"
#include "codec_types.h"
#include "codec.h"
#include "codec_state.h"
#include "playout.h"
#include "channel_types.h"
#include "channel.h"
#include "session.h"
#include "audio.h"
#include "audio_util.h"
#include "sndfile.h"
#include "converter.h"
#include "parameters.h"
#include "pdb.h"
#include "ui_send_rtp.h"
#include "ui_send_audio.h"
#include "ui_send_prefs.h"
#include "rtp.h"
#include "transmit.h"
#include "util.h"
#define TX_BUFFER_MAGIC 0x12345678
/* All this code can be greatly simplified and reduced by making
* better use of the playout buffer structure in playout.h.
*/
typedef struct s_tx_unit {
sample *data; /* pointer to raw data in read_buf */
uint32_t dur_used; /* number of time intervals filled */
uint16_t energy; /* */
char silence; /* First pass */
u_char send; /* Silence second pass */
u_char encoded; /* TRUE if this unit has been encoded for transmission */
u_char live_capture; /* TRUE if this unit came from a microphone, FALSE if it came from a file */
} tx_unit;
typedef struct s_tx_buffer {
struct s_session *sp;
struct s_vad *vad;
struct s_agc *agc;
struct s_bias_ctl *bc;
struct s_pb *media_buffer;
struct s_pb *channel_buffer;
struct s_pb *audio_buffer; /* Audio buffer and it's iterators... */
struct s_pb_iterator *reading; /* ...current read point iterator */
struct s_pb_iterator *silence; /* ...silence classification iterator */
struct s_pb_iterator *transmit; /* ...transmission point iterator */
struct s_codec_state_store *state_store; /* Encoder states */
uint32_t sending_audio:1;
uint32_t sample_rate;
uint16_t channels;
uint16_t unit_dur; /* dur. in sampling intervals (excludes channels) */
/* Statistics log */
double mean_read_dur;
/* These are a hack because we use playout buffer
* which expects time units of type timestamp_t so we need
* to be able to map to and from 32 bit no for
* packet timestamp */
ts_sequencer down_seq; /* used for 32 -> timestamp_t */
ts_sequencer up_seq; /* used for timestamp_t -> 32 */
/* place for the samples */
sample samples[DEVICE_REC_BUF];
int last_sample; /* Stores the index of the last read buffer */
/* bandwidth estimate parameters */
int bps_bytes_sent;
timestamp_t bps_last_update;
/* For debugging... */
uint32_t magic;
} tx_buffer;
static sample dummy_buf[DEVICE_REC_BUF];
static void tx_read_sndfile(session_t *sp, uint16_t tx_freq, uint16_t tx_channels, tx_unit *u);
static void
tx_buffer_validate(tx_buffer *tb)
{
#ifdef DEBUG
session_validate(tb->sp);
if (tb->sending_audio) {
assert(pb_iterator_count(tb->audio_buffer) == 3);
} else {
assert(pb_iterator_count(tb->audio_buffer) == 0);
}
assert(tb->channels > 0 && tb->channels <= 2);
assert(tb->last_sample < DEVICE_REC_BUF);
#endif
assert(tb->magic == TX_BUFFER_MAGIC);
}
static int
tx_unit_create(tx_buffer *tb, tx_unit **ptu, int n_samples)
{
tx_unit *tu;
tx_buffer_validate(tb);
tu = xmalloc(sizeof(tx_unit));
if (tu) {
*ptu = tu;
/* Position sample pointer */
if (tb->last_sample + n_samples >= DEVICE_REC_BUF) {
tb->last_sample = 0;
}
tu->data = tb->samples + tb->last_sample;
tu->dur_used = 0;
tu->energy = 555;
tu->silence = -1; /* -1 == not yet performed silence detection */
tu->send = 0;
tu->encoded = FALSE;
tu->live_capture = TRUE;
tb->last_sample += n_samples;
tx_buffer_validate(tb);
return TRUE;
}
debug_msg("Failed to allocate tx_unit\n");
return FALSE;
}
static void
tx_unit_destroy(tx_unit **ptu, uint32_t len)
{
tx_unit *tu = *ptu;
assert(tu != NULL);
assert(len == sizeof(tx_unit));
xfree(tu);
*ptu = NULL;
}
int
tx_create(tx_buffer **ntb,
session_t *sp,
uint32_t sample_rate,
uint16_t channels,
uint16_t unit_dur)
{
tx_buffer *tb;
tb = (tx_buffer*)xmalloc(sizeof(tx_buffer));
if (tb) {
memset(tb, 0, sizeof(tx_buffer));
debug_msg("Unit duration %d channels %d\n", unit_dur, channels);
tb->magic = TX_BUFFER_MAGIC;
tb->sp = sp;
tb->sending_audio = FALSE;
tb->sample_rate = sample_rate;
tb->channels = channels;
tb->unit_dur = unit_dur;
tb->mean_read_dur = unit_dur;
tb->bc = bias_ctl_create(channels, sample_rate);
tb->vad = vad_create(unit_dur, sample_rate);
tb->agc = agc_create(sp);
sp->auto_sd = sd_init(unit_dur, sample_rate);
sp->manual_sd = manual_sd_init(unit_dur, sample_rate, sp->manual_sd_thresh);
pb_create(&tb->audio_buffer, (playoutfreeproc)tx_unit_destroy);
pb_create(&tb->media_buffer, (playoutfreeproc)media_data_destroy);
pb_create(&tb->channel_buffer, (playoutfreeproc)channel_data_destroy);
tx_buffer_validate(tb);
*ntb = tb;
return TRUE;
}
return FALSE;
}
void
tx_destroy(tx_buffer **ptb)
{
tx_buffer *tb;
assert(ptb != NULL);
tb = *ptb;
assert(tb != NULL);
tx_buffer_validate(tb);
bias_ctl_destroy(tb->bc);
sd_destroy(tb->sp->auto_sd);
manual_sd_destroy(tb->sp->manual_sd);
vad_destroy(tb->vad);
agc_destroy(tb->agc);
pb_destroy(&tb->audio_buffer);
pb_destroy(&tb->media_buffer);
pb_destroy(&tb->channel_buffer);
xfree(tb);
*ptb = NULL;
}
/* These routines are called when the button on the interface is toggled */
void
tx_start(tx_buffer *tb)
{
tx_unit *tu_new;
timestamp_t unit_start;
debug_msg("Starting to transmit...\n");
tx_buffer_validate(tb);
if (tb->sending_audio) {
debug_msg("Already sending... why? Fix me!");
abort();
}
tb->sending_audio = TRUE;
/* Turn off auto lecture */
tb->sp->auto_lecture = 1;
/* Reset signal classification and auto-scaling */
sd_reset(tb->sp->auto_sd);
vad_reset(tb->vad);
agc_reset(tb->agc);
/* Attach iterator for silence classification */
pb_iterator_create(tb->audio_buffer, &tb->transmit);
pb_iterator_create(tb->audio_buffer, &tb->silence);
pb_iterator_create(tb->audio_buffer, &tb->reading);
assert(pb_iterator_count(tb->audio_buffer) == 3);
/* Add one unit to media buffer to kick off audio reading */
unit_start = tb->sp->cur_ts;
tx_unit_create(tb, &tu_new, tb->unit_dur * tb->channels);
assert(ts_valid(unit_start));
pb_add(tb->audio_buffer, (u_char*)tu_new, sizeof(tx_unit), unit_start);
/* And then put reading iterator on it */
pb_iterator_advance(tb->reading);
assert(tb->state_store == NULL);
codec_state_store_create(&tb->state_store, ENCODER);
tx_update_ui(tb);
tb->bps_last_update = tb->sp->cur_ts;
}
void
tx_stop(tx_buffer *tb)
{
struct timeval tv;
tx_buffer_validate(tb);
if (tb->sending_audio == FALSE) {
return;
}
gettimeofday(&tv, NULL);
tb->sp->auto_lecture = tv.tv_sec;
codec_state_store_destroy(&tb->state_store);
channel_encoder_reset(tb->sp->channel_coder);
ui_send_audio_input_powermeter(tb->sp, tb->sp->mbus_ui_addr, 0);
tb->sending_audio = FALSE;
/* Detach iterators */
assert(pb_iterator_count(tb->audio_buffer) == 3);
pb_iterator_destroy(tb->audio_buffer, &tb->transmit);
pb_iterator_destroy(tb->audio_buffer, &tb->silence);
pb_iterator_destroy(tb->audio_buffer, &tb->reading);
assert(pb_iterator_count(tb->audio_buffer) == 0);
/* Drain playout buffers */
pb_flush(tb->audio_buffer);
pb_flush(tb->media_buffer);
pb_flush(tb->channel_buffer);
tb->bps_bytes_sent = 0;
tx_buffer_validate(tb);
tx_update_ui(tb);
}
int
tx_read_audio(tx_buffer *tb)
{
session_t *sp;
tx_unit *u;
timestamp_t u_ts;
uint32_t read_dur = 0, this_read, ulen;
tx_buffer_validate(tb);
sp = tb->sp;
if (tb->sending_audio) {
int filled_unit;
assert(pb_iterator_count(tb->audio_buffer) == 3);
do {
if (pb_iterator_get_at(tb->reading, (u_char**)&u, &ulen, &u_ts) == FALSE) {
debug_msg("Reading iterator failed to get unit!\n");
}
assert(u != NULL);
this_read = audio_read(sp->audio_device,
u->data + u->dur_used * tb->channels,
(tb->unit_dur - u->dur_used) * tb->channels) / tb->channels;
assert(this_read <= tb->unit_dur - u->dur_used);
filled_unit = FALSE;
u->dur_used += this_read;
if (u->dur_used == tb->unit_dur) {
read_dur += tb->unit_dur;
if (sp->in_file) {
/* Reading from a file overwrites any audio we've captured... */
tx_read_sndfile(sp, tb->sample_rate, tb->channels, u);
}
sp->cur_ts = ts_add(sp->cur_ts, ts_map32(tb->sample_rate, tb->unit_dur));
u_ts = sp->cur_ts;
filled_unit = TRUE;
/* We've filled one unit, so create the next one... */
tx_unit_create(tb, &u, tb->unit_dur * tb->channels);
pb_add(tb->audio_buffer, (u_char*)u, ulen, u_ts);
pb_iterator_advance(tb->reading);
}
} while (filled_unit == TRUE);
assert(pb_iterator_count(tb->audio_buffer) == 3);
} else {
int this_read = 0;
/* We're not sending, but have access to the audio device.
* Read the audio anyway to get exact values, and then
* throw the data we've just read away...
*/
do {
this_read = audio_read(sp->audio_device, dummy_buf, DEVICE_REC_BUF / 4) / sp->tb->channels;
read_dur += this_read;
} while (this_read > 0);
sp->cur_ts = ts_add(sp->cur_ts, ts_map32(tb->sample_rate, read_dur));
}
if (read_dur >= (uint32_t)(DEVICE_REC_BUF / (4 * tb->channels))) {
debug_msg("Read a lot of audio %d\n", read_dur);
if (tb->sending_audio) {
debug_msg("Resetting transmitter\n");
tx_stop(tb);
tx_start(tb);
}
}
if (read_dur) {
sp->tb->mean_read_dur += ((double)read_dur - sp->tb->mean_read_dur) / 8.0;
}
assert(read_dur < 0x7fffffff);
return read_dur;
}
int
tx_process_audio(tx_buffer *tb)
{
struct s_pb_iterator *marker;
tx_unit *u;
uint32_t u_len;
timestamp_t u_ts;
int to_send;
tx_buffer_validate(tb);
assert(tb->sending_audio);
/* Do signal classification up until read point, that
* is not a complete audio frame so cannot be done
*/
assert(pb_iterator_count(tb->audio_buffer) == 3);
pb_iterator_get_at(tb->silence, (u_char**)&u, &u_len, &u_ts);
while (pb_iterators_equal(tb->silence, tb->reading) == FALSE) {
assert(u->dur_used == tb->unit_dur);
if (u->live_capture) {
bias_remove(tb->bc, u->data, u->dur_used * tb->channels);
} else {
debug_msg("Unit came from a file, no need for bias removal\n");
}
u->energy = audio_avg_energy(u->data, u->dur_used * tb->channels, tb->channels);
u->send = FALSE;
/* Silence classification on this block */
assert(u->silence == -1); /* We should only do this once per block... */
switch(tb->sp->silence_detection) {
case SILENCE_DETECTION_AUTO:
u->silence = sd(tb->sp->auto_sd, (uint16_t)u->energy);
break;
case SILENCE_DETECTION_MANUAL:
u->silence = manual_sd(tb->sp->manual_sd,
(uint16_t)u->energy,
audio_abs_max(u->data, u->dur_used * tb->channels));
break;
case SILENCE_DETECTION_OFF:
u->silence = 0;
break;
}
assert((u->silence == 0) || (u->silence == 1));
/* Pass decision to voice activity detector (damps transients, etc) */
to_send = vad_to_get(tb->vad,
(u_char)u->silence,
(u_char)((tb->sp->lecture) ? VAD_MODE_LECT : VAD_MODE_CONF));
agc_update(tb->agc, (uint16_t)u->energy, vad_talkspurt_no(tb->vad));
if (tb->sp->silence_detection != SILENCE_DETECTION_OFF) {
if (to_send != 0) {
pb_iterator_dup(&marker, tb->silence);
while(u != NULL && to_send != 0) {
u->send = TRUE;
to_send --;
pb_iterator_retreat(marker);
pb_iterator_get_at(marker, (u_char**)&u, &u_len, &u_ts);
}
pb_iterator_destroy(tb->audio_buffer, &marker);
}
assert(pb_iterator_count(tb->audio_buffer) == 3);
} else {
u->silence = FALSE;
u->send = TRUE;
}
pb_iterator_advance(tb->silence);
pb_iterator_get_at(tb->silence, (u_char**)&u, &u_len, &u_ts);
}
if (tb->sp->agc_on == TRUE && agc_apply_changes(tb->agc) == TRUE) {
ui_send_audio_input_gain(tb->sp, tb->sp->mbus_ui_addr);
}
tx_buffer_validate(tb);
return TRUE;
}
static int
tx_encode(struct s_codec_state_store *css,
sample *buf,
uint32_t dur_used,
uint32_t encoding,
u_char *payloads,
coded_unit **coded)
{
codec_id_t id;
uint32_t i;
id = codec_get_by_payload(payloads[encoding]);
assert(id);
/* Look to see if we have already coded this unit,
* i.e. we are using redundancy. Don't want to code
* twice since it screws up encoder state.
*/
for (i = 0; i < encoding; i++) {
if (coded[i]->id == id) {
break;
}
}
if (i == encoding) {
const codec_format_t *cf;
coded_unit native;
codec_state *cs;
/* Unit does not exist already */
cf = codec_get_format(id);
/* native is a temporary coded_unit that we use to pass to
* codec_encode since this take a 'native' (raw) coded unit as
* input and fills in coded with the transformed data.
*/
native.id = codec_get_native_coding((uint32_t)cf->format.sample_rate,
(uint16_t)cf->format.channels);
native.state = NULL;
native.state_len = 0;
native.data = (u_char*)buf;
native.data_len = (uint16_t)(dur_used * sizeof(sample) * cf->format.channels);
/* Get codec state from those stored for us */
cs = codec_state_store_get(css, id);
return codec_encode(cs, &native, coded[encoding]);
} else {
/* duplicate coded unit */
return coded_unit_dup(coded[encoding], coded[i]);
}
}
void
tx_send(tx_buffer *tb)
{
struct s_pb_iterator *cpos;
channel_data *cd;
channel_unit *cu;
tx_unit *u;
timestamp_t u_ts, u_sil_ts, delta;
timestamp_t time_ts;
uint32_t time_32, cd_len;
uint32_t u_len, units, i, j, k, n, send, encoding;
int success;
char *extn;
uint16_t extn_len, extn_type;
tx_buffer_validate(tb);
assert(pb_iterator_count(tb->audio_buffer) == 3);
if (pb_iterators_equal(tb->silence, tb->transmit)) {
return;
}
pb_iterator_get_at(tb->silence, (u_char**)&u, &u_len, &u_sil_ts);
pb_iterator_get_at(tb->transmit, (u_char**)&u, &u_len, &u_ts);
assert(ts_gt(u_sil_ts, u_ts));
delta = ts_sub(u_sil_ts, u_ts);
n = delta.ticks / tb->unit_dur;
units = channel_encoder_get_units_per_packet(tb->sp->channel_coder);
while(n >= units) {
/* We have accumulated at least enough audio to fill an RTP packet. */
/* The following code processes one packet's worth of audio, and if */
/* any of the units are marked `to send' then the entire packet is */
/* encoded and placed onto the transmission queue: tb->media_buffer */
send = FALSE;
for (i = 0; i < units; i++) {
pb_iterator_get_at(tb->transmit, (u_char**)&u, &u_len, &u_ts);
assert((u->silence == 0) || (u->silence == 1)); /* We MUST have done silence detection before transmit */
if (u->send) {
send = TRUE;
break;
}
pb_iterator_advance(tb->transmit);
}
/* Rewind transmit point to where it was before we did last check */
while(i > 0) {
pb_iterator_retreat(tb->transmit);
i--;
}
for (i = 0;i < units; i++) {
media_data *m;
success = pb_iterator_get_at(tb->transmit, (u_char**)&u, &u_len, &u_ts);
assert(success);
assert((u->silence == 0) || (u->silence == 1)); /* We MUST have done silence detection before transmit */
if (send) {
assert(u->encoded == FALSE);
media_data_create(&m, tb->sp->num_encodings);
for(encoding = 0; encoding < (uint32_t)tb->sp->num_encodings; encoding ++) {
tx_encode(tb->state_store, u->data, u->dur_used, encoding, tb->sp->encodings, m->rep);
}
/* At this point, the uncompressed data `u' is no longer needed since its */
/* coded form is in tb->media_buffer. The tb->transmit is audited later. */
/* We mark it as being encoded, as a debugging check to ensure that it is */
/* not accidently re-sent later. */
u->encoded = TRUE;
} else {
media_data_create(&m, 0);
}
assert(m != NULL);
success = pb_add(tb->media_buffer, (u_char*)m, sizeof(media_data), u_ts);
assert(success);
success = pb_iterator_advance(tb->transmit);
assert(success);
}
n -= units;
}
/* This does any necessary channel coding... The channel coder takes units from */
/* tb->media_buffer and moves then (eventually) onto tb->channel_buffer. They */
/* be delayed, reordered, aggregated, etc, in the process, but we don't worry */
/* about that here. tb->media_buffer is drained by the channel encoding stage. */
channel_encoder_encode(tb->sp->channel_coder, tb->media_buffer, tb->channel_buffer);
/* Pull units out of tb->channel_buffer and transmit them... */
pb_iterator_create(tb->channel_buffer, &cpos);
pb_iterator_advance(cpos);
while(pb_iterator_detach_at(cpos, (u_char**)&cd, &cd_len, &time_ts)) {
uint32_t csrc[16];
char *data, pt;
int data_len, done;
int marker;
/* Set up fields for RTP header */
cu = cd->elem[0];
pt = channel_coder_get_payload(tb->sp->channel_coder, cu->pt);
time_32 = ts_seq32_out(&tb->up_seq, tb->sample_rate, time_ts);
if (time_32 - tb->sp->last_depart_ts != units * tb->unit_dur) {
marker = 1;
debug_msg("new talkspurt (%d - %d != %d)\n", time_32, tb->sp->last_depart_ts, units * tb->unit_dur);
} else {
marker = 0;
}
/* layer loop starts here */
for(j = 0; j < (uint32_t)tb->sp->layers; j++) {
assert(tb->sp->layers == 1); /* FIXME */
assert(j == 0); /* FIXME */
#ifdef DEBUG_HEADER_EXTN
extn = (char *) xmalloc(5);
sprintf(extn, "test");
extn_len = 1; /* 32 bit words of extn data */
extn_type = 1;
#else
extn = NULL;
extn_len = 0;
extn_type = 0;
#endif
data_len = 0;
/* determine data length for packet. This is a */
/* little over complicated because of layering... */
for(i = j, k=0; i < cd->nelem; i += tb->sp->layers) {
data_len += (int) cd->elem[i]->data_len;
k++;
}
/* Copy all out going data into one block (no scatter) */
data = (char*)block_alloc(data_len);
done = 0;
for(i = j; i < cd->nelem; i += tb->sp->layers) {
memcpy(data + done, cd->elem[i]->data, cd->elem[i]->data_len);
done += cd->elem[i]->data_len;
}
rtp_send_data(tb->sp->rtp_session[j], time_32, pt, marker, 0, csrc, data, data_len, extn, extn_len, extn_type);
block_free(data, data_len);
tb->bps_bytes_sent += data_len;
if (extn != NULL) {
xfree(extn);
}
}
/* layer loop ends here */
tb->sp->last_depart_ts = time_32;
channel_data_destroy(&cd, sizeof(channel_data));
}
pb_iterator_destroy(tb->channel_buffer, &cpos);
/* Drain tb->audio, remove every older than silence position
* by two packets worth of audio. Note tb->media_buffer is drained
* by the channel encoding stage and tb->channel_buffer is drained
* in the act of transmission with pbi_detach_at call.
*/
u_ts = ts_map32(tb->sample_rate, 2 * units * tb->unit_dur);
{
struct s_pb *buf;
buf = pb_iterator_get_playout_buffer(tb->transmit);
assert(pb_iterator_count(buf) == 3);
}
assert(pb_iterator_count(tb->audio_buffer) == 3);
n = pb_iterator_audit(tb->transmit, u_ts);
}
void
tx_update_ui(tx_buffer *tb)
{
session_t *sp = tb->sp;
tx_buffer_validate(tb);
if (sp->meter && tb->sending_audio) {
struct s_pb_iterator *prev;
tx_unit *u;
uint32_t u_len;
timestamp_t u_ts;
/* Silence point should be upto read point here so use last
* completely read unit.
*/
assert(pb_iterator_count(tb->audio_buffer) == 3);
pb_iterator_dup(&prev, tb->silence);
pb_iterator_retreat(prev);
if (pb_iterators_equal(tb->silence, prev)) {
pb_iterator_destroy(tb->audio_buffer, &prev);
return;
}
if (pb_iterator_get_at(prev, (u_char**)&u, &u_len, &u_ts) &&
(vad_in_talkspurt(sp->tb->vad) == TRUE || sp->silence_detection == SILENCE_DETECTION_OFF)) {
ui_send_audio_input_powermeter(sp, sp->mbus_ui_addr, lin2vu(u->energy, 100, VU_INPUT));
} else {
ui_send_audio_input_powermeter(sp, sp->mbus_ui_addr, 0);
}
pb_iterator_destroy(tb->audio_buffer, &prev);
assert(pb_iterator_count(tb->audio_buffer) == 3);
}
/* This next routine is really inefficient - we only need do ui_info_activate() */
/* when the state changes, else we flood the mbus with redundant messages. */
if (sp->silence_detection != SILENCE_DETECTION_OFF) {
if (vad_in_talkspurt(sp->tb->vad) == TRUE) {
if (sp->ui_activated == FALSE) {
ui_send_rtp_active(sp, sp->mbus_ui_addr, rtp_my_ssrc(sp->rtp_session[0]));
sp->ui_activated = TRUE;
}
} else if (sp->ui_activated == TRUE) {
ui_send_rtp_inactive(sp, sp->mbus_ui_addr, rtp_my_ssrc(sp->rtp_session[0]));
sp->ui_activated = FALSE;
}
if (sp->lecture) {
sp->lecture = FALSE;
ui_send_lecture_mode(sp, sp->mbus_ui_addr);
}
} else if (sp->silence_detection == SILENCE_DETECTION_OFF) {
if (tb->sending_audio == TRUE && sp->ui_activated == FALSE) {
ui_send_rtp_active(sp, sp->mbus_ui_addr, rtp_my_ssrc(sp->rtp_session[0]));
sp->ui_activated = TRUE;
}
}
if (tb->sending_audio == FALSE && sp->ui_activated == TRUE) {
ui_send_rtp_inactive(sp, sp->mbus_ui_addr, rtp_my_ssrc(sp->rtp_session[0]));
sp->ui_activated = FALSE;
}
}
void
tx_igain_update(tx_buffer *tb)
{
tx_buffer_validate(tb);
sd_reset(tb->sp->auto_sd);
agc_reset(tb->agc);
}
int
tx_is_sending(tx_buffer *tb)
{
return tb->sending_audio;
}
double
tx_get_bps(tx_buffer *tb)
{
tx_buffer_validate(tb);
if (tb->bps_bytes_sent == 0) {
return 0.0;
} else {
uint32_t dms;
double bps;
timestamp_t delta = ts_abs_diff(tb->bps_last_update, tb->sp->cur_ts);
dms = timestamp_to_us(delta);
bps = tb->bps_bytes_sent * 8e6 / (double)dms;
tb->bps_bytes_sent = 0;
tb->bps_last_update = tb->sp->cur_ts;
return bps;
}
}
static void
tx_read_sndfile(session_t *sp, uint16_t tx_freq, uint16_t tx_channels, tx_unit *u)
{
sndfile_fmt_t sfmt;
int samples_read, dst_samples;
snd_get_format(sp->in_file, &sfmt);
if (sfmt.channels != tx_channels || sfmt.sample_rate != tx_freq) {
converter_fmt_t target;
const converter_fmt_t *actual;
coded_unit in, out;
target.src_channels = (uint16_t)sfmt.channels;
target.src_freq = (uint32_t)sfmt.sample_rate;
target.dst_channels = (uint16_t)tx_channels;
target.dst_freq = tx_freq;
/* Check if existing converter exists and whether valid */
if (sp->in_file_converter != NULL) {
actual = converter_get_format(sp->in_file_converter);
if (memcmp(actual, &target, sizeof(converter_fmt_t)) != 0) {
converter_destroy(&sp->in_file_converter);
}
}
/* Create relevent converter if necessary */
if (sp->in_file_converter == NULL) {
const converter_details_t *details = NULL;
uint32_t i, n;
/* We iterate through available converters
* since they have different capabilities,
* specifically MS-ACM does m*8:n*11025 and
* the RAT ones don't at time of writing.
*/
n = converter_get_count();
for(i = 0; i < n; i++) {
details = converter_get_details(i);
if (converter_create(details->id, &target, &sp->in_file_converter)) {
debug_msg("Created converter %s for sound file conversion\n", details->name);
break;
}
}
if (i == n) {
debug_msg("Could not create suitable converter for sound file\n");
snd_read_close(&sp->in_file);
return;
}
}
dst_samples = u->dur_used * tx_channels;
/* Prepare block to read audio into */
in.id = codec_get_native_coding(target.src_freq, target.src_channels);
in.state = NULL;
in.state_len = 0;
in.data_len = sizeof(sample) * dst_samples *
(target.src_freq * target.src_channels) /
(target.dst_freq * target.dst_channels);
in.data = (u_char*)block_alloc(in.data_len);
/* Get the sound from file */
samples_read = snd_read_audio(&sp->in_file, (sample*)in.data, (uint16_t)(in.data_len / sizeof(sample)));
if (samples_read == 0) {
/* File is paused */
codec_clear_coded_unit(&in);
return;
}
/* Prepare output block */
memset(&out, 0, sizeof(out));
converter_process(sp->in_file_converter, &in, &out);
assert((uint32_t)dst_samples == out.data_len / sizeof(sample));
memcpy(u->data, out.data, dst_samples * sizeof(sample));
/* Tidy up */
codec_clear_coded_unit(&in);
codec_clear_coded_unit(&out);
} else {
samples_read = snd_read_audio(&sp->in_file, u->data, (uint16_t)(u->dur_used * tx_channels));
}
if (samples_read > 0) {
u->live_capture = FALSE;
}
}
uint32_t
tx_get_rtp_time(session_t *sp)
{
return ts_seq32_out(&sp->tb->up_seq, sp->tb->sample_rate, sp->cur_ts);
}
|