1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/*
* FILE: ts.c
* AUTHORS: Orion Hodson
*
* Copyright (c) 1999-2001 University College London
* All rights reserved.
*/
#ifndef HIDE_SOURCE_STRINGS
static const char cvsid[] =
"$Id: ts.c,v 1.20 2002/03/16 01:00:49 ucacoxh Exp $";
#endif /* HIDE_SOURCE_STRINGS */
#include "config_unix.h"
#include "config_win32.h"
#include "crypt_random.h"
#include "ts.h"
typedef struct {
uint32_t freq;
uint32_t wrap;
} ticker;
/* Each timebase has a range corresponding to 0..N seconds. Depending
* on the frequency this represents a differing number of ticks. So
* an 8 kHz clock has ticks ranging from 0..M, a 16kHz clock has ticks
* ranging from 0..2M. We can compare timestamps simply by scaling up
* from lower frequency clocks to higher frequency clocks.
*
* As defined in ts.h we use 26 bits as full range of ticks. In
* reality, the highest frequency clock coded (96k) uses under
* the full 26 bit range ,0..floor (2^26-1 / 90000). All other clocks use
* less than this. The range corresponds to 372 seconds which is ample for
* media playout concerns.
*
* NB. The tickers must be frequency ordered - comparison code depends
* on it!
*/
ticker tickers[] = {
{ 8000, 0x002d6900 },
{ 11025, 0x003e94b4 },
{ 16000, 0x005ad200 },
{ 22050, 0x007d2968 },
{ 24000, 0x00883b00 },
{ 32000, 0x00b5a400 },
{ 40000, 0x00e30d00 },
{ 44100, 0x00fa52d0 },
{ 48000, 0x01107600 },
{ 90000, 0x01fedd40 },
{ 96000, 2 * 0x01107600 },
};
#define TS_NUM_TICKERS (sizeof(tickers)/sizeof(ticker))
#define TS_CHECK_BITS 0x03
timestamp_t
ts_map32(uint32_t freq, uint32_t ticks32)
{
uint32_t i;
timestamp_t out;
/* Make invalid timestamp */
out.check = ~TS_CHECK_BITS;
for(i = 0; i < TS_NUM_TICKERS; i++) {
if (tickers[i].freq == freq) {
out.ticks = ticks32 % tickers[i].wrap;
out.check = TS_CHECK_BITS;
out.idx = i;
break;
}
}
assert(ts_valid(out));
return out;
}
static timestamp_t
ts_rebase(uint32_t new_idx, timestamp_t t)
{
/* Use 64 bit quantity as temporary since
* we are multiplying a 25 bit quantity by a
* 16 bit one. Only have to do this as
* frequencies are not all multiples of each
* other.
*/
int64_t new_ticks;
assert(new_idx < TS_NUM_TICKERS);
/* new_ticks = old_ticks * new_freq / old_freq */
new_ticks = (int64_t)t.ticks * tickers[new_idx].freq;
new_ticks /= tickers[t.idx].freq;
/* Bound tick range */
new_ticks %= (uint32_t)tickers[new_idx].wrap;
/* Update ts fields */
t.ticks = (uint32_t)new_ticks;
t.idx = new_idx;
return t;
}
int
ts_gt(timestamp_t t1, timestamp_t t2)
{
uint32_t half_range, x1, x2;
assert(ts_valid(t1));
assert(ts_valid(t2));
/* Make sure both timestamps have same (higher) timebase */
if (t1.idx > t2.idx) {
t2 = ts_rebase((unsigned)t1.idx, t2);
} else if (t1.idx < t2.idx) {
t1 = ts_rebase((unsigned)t2.idx, t1);
}
half_range = tickers[t1.idx].wrap >> 1;
x1 = t1.ticks;
x2 = t2.ticks;
if (x1 > x2) {
return (x1 - x2) < half_range;
} else {
return (x2 - x1) > half_range;
}
}
int
ts_eq(timestamp_t t1, timestamp_t t2)
{
assert(ts_valid(t1));
assert(ts_valid(t2));
/* Make sure both timestamps have same (higher) timebase */
if (t1.idx > t2.idx) {
t2 = ts_rebase((unsigned)t1.idx, t2);
} else if (t1.idx < t2.idx) {
t1 = ts_rebase((unsigned)t2.idx, t1);
}
return (t2.ticks == t1.ticks);
}
timestamp_t
ts_add(timestamp_t t1, timestamp_t t2)
{
uint32_t ticks;
assert(ts_valid(t1));
assert(ts_valid(t2));
/* Make sure both timestamps have same (higher) timebase */
if (t1.idx > t2.idx) {
t2 = ts_rebase(t1.idx, t2);
} else if (t1.idx < t2.idx) {
t1 = ts_rebase(t2.idx, t1);
}
assert(t1.idx == t2.idx);
ticks = (t1.ticks + t2.ticks) % tickers[t1.idx].wrap;
t1.ticks = ticks;
return t1;
}
timestamp_t
ts_sub(timestamp_t t1, timestamp_t t2)
{
timestamp_t out;
uint32_t ticks;
assert(ts_valid(t1));
assert(ts_valid(t2));
/* Make sure both timestamps have same (higher) timebase */
if (t1.idx > t2.idx) {
t2 = ts_rebase(t1.idx, t2);
} else if (t1.idx < t2.idx) {
t1 = ts_rebase(t2.idx, t1);
}
assert(t1.idx == t2.idx);
if (t1.ticks < t2.ticks) {
/* Handle wrap */
ticks = t1.ticks + tickers[t1.idx].wrap - t2.ticks;
} else {
ticks = t1.ticks - t2.ticks;
}
out.idx = t1.idx;
out.check = TS_CHECK_BITS;
assert(ticks < tickers[t1.idx].wrap);
assert((ticks & 0xfe000000) == 0);
out.ticks = ticks;
assert((unsigned)out.ticks == ticks);
assert(ts_valid(out));
return out;
}
timestamp_t
ts_abs_diff(timestamp_t t1, timestamp_t t2)
{
if (ts_gt(t1, t2)) {
return ts_sub(t1, t2);
} else {
return ts_sub(t2, t1);
}
}
timestamp_t
ts_mul(timestamp_t t, uint32_t x)
{
assert(ts_valid(t));
t.ticks = t.ticks * x;
return t;
}
timestamp_t
ts_div(timestamp_t t, uint32_t x)
{
assert(ts_valid(t));
t.ticks = t.ticks / x;
return t;
}
timestamp_t
ts_convert(uint32_t new_freq, timestamp_t ts)
{
uint32_t i;
timestamp_t out;
out.check = 0;
for(i = 0; i < TS_NUM_TICKERS; i++) {
if (tickers[i].freq == new_freq) {
out = ts_rebase(i, ts);
break;
}
}
assert(ts_valid(out));
return out;
}
uint32_t
timestamp_to_ms(timestamp_t t1)
{
double r;
uint32_t f;
assert(ts_valid(t1));
f = ts_get_freq(t1);
r = t1.ticks * 1000.0/(double)f;
return (uint32_t)r;
}
uint32_t
timestamp_to_us(timestamp_t t1)
{
double r;
uint32_t f;
assert(ts_valid(t1));
f = ts_get_freq(t1);
r = t1.ticks * 1000000.0/(double)f;
return (uint32_t)r;
}
int
ts_valid(timestamp_t t1)
{
return ((unsigned)t1.idx < TS_NUM_TICKERS &&
(t1.check == TS_CHECK_BITS) &&
(unsigned)t1.ticks < tickers[t1.idx].wrap);
}
uint32_t
ts_get_freq(timestamp_t t1)
{
assert(ts_valid(t1));
return tickers[t1.idx].freq;
}
/* ts_map32_in and ts_map32_out are used to map between 32bit clock
* and timestamp type which is modulo M. Because the boundaries of
* the timestamping wraps do not coincide, we cache last translated
* value and add relative difference to other timestamp. The application
* does not then have to deal with discontinuities in timestamps.
*/
#define TS_WRAP_32 0x7fffffff
static
int ts32_gt(uint32_t a, uint32_t b)
{
uint32_t diff;
diff = a - b;
return (diff < TS_WRAP_32 && diff != 0);
}
timestamp_t
ts_seq32_in(ts_sequencer *s, uint32_t freq, uint32_t curr_32)
{
uint32_t delta_32;
timestamp_t delta_ts;
/* Inited or freq changed check */
if (s->freq != freq || !ts_valid(s->last_ts)) {
s->last_ts = ts_map32(freq, lrand48());
s->last_32 = curr_32;
s->freq = freq;
return s->last_ts;
}
/* Find difference in 32 bit timestamps, scale to timestamp_t size
* and add to last returned timestamp.
*/
if (ts32_gt(curr_32, s->last_32)) {
delta_32 = curr_32 - s->last_32;
delta_ts = ts_map32(freq, delta_32);
s->last_ts = ts_add(s->last_ts, delta_ts);
} else {
delta_32 = s->last_32 - curr_32;
delta_ts = ts_map32(freq, delta_32);
s->last_ts = ts_sub(s->last_ts, delta_ts);
}
s->last_32 = curr_32;
return s->last_ts;
}
uint32_t
ts_seq32_out(ts_sequencer *s, uint32_t freq, timestamp_t curr_ts)
{
uint32_t delta_32;
timestamp_t delta_ts;
/* Inited or freq change check */
if (s->freq != freq || !ts_valid(s->last_ts)) {
s->last_ts = curr_ts;
s->last_32 = lrand48();
s->freq = freq;
return s->last_32;
}
if (ts_gt(curr_ts, s->last_ts)) {
delta_ts = ts_sub(curr_ts, s->last_ts);
delta_32 = delta_ts.ticks * ts_get_freq(delta_ts) / freq;
s->last_32 = s->last_32 + delta_32;
} else {
delta_ts = ts_sub(s->last_ts, curr_ts);
delta_32 = delta_ts.ticks * ts_get_freq(delta_ts) / freq;
s->last_32 = s->last_32 - delta_32;
}
s->last_ts = curr_ts;
return s->last_32;
}
|