1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/***********************************************************************
* ratpoints-2.1.2 *
* - A program to find rational points on hyperelliptic curves *
* Copyright (C) 2008, 2009 Michael Stoll *
* *
* This program is free software: you can redistribute it and/or *
* modify it under the terms of the GNU General Public License *
* as published by the Free Software Foundation, either version 2 of *
* the License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of version 2 of the GNU General *
* Public License along with this program. *
* If not, see <http://www.gnu.org/licenses/>. *
***********************************************************************/
/***********************************************************************
* init.c *
* *
* Macro definitions for the sieve_init functions *
* *
* Michael Stoll, Apr 14, 2009 *
***********************************************************************/
#include "rp-private.h"
#ifdef USE_SSE
/* The following is for primes < LONG_LENGTH */
#define CODE_INIT_SIEVE1(prime) \
static ratpoints_bit_array *sieve_init_##prime(void *se1, long b1, void *args1) \
{ \
ratpoints_sieve_entry *se = se1; \
ratpoints_args *args = args1; \
register int *isfs = se->is_f_square; \
register long b = b1; \
long lmp = LONG_LENGTH % (prime); \
long ldp = LONG_LENGTH / (prime); \
long p1 = (ldp + 1) * (prime); \
long diff_shift = p1 & LONG_MASK; \
long diff = LONG_LENGTH - diff_shift; \
register unsigned long help0;\
{ register long a; \
register long d = se->inverses[b]; \
register long ab = 0; /* a/b mod p */ \
register unsigned long test = 1UL; \
register unsigned long he0 = 0UL; \
for(a = 0; a < (prime); a++) \
{ if(isfs[ab]) { he0 |= test; } \
ab += d; \
if(ab >= (prime)) ab -= (prime); \
test <<= 1; \
} \
help0 = he0; \
} \
\
{ register unsigned long help1; \
{ /* repeat bit pattern floor(LONG_LENGTH/p) times */ \
register unsigned long pattern = help0; \
register long i; \
/* the p * (floor(LONG_LENGTH/p) + 1) - LONG_LENGTH \
= p - (LONG_LENGTH mod p) \
upper bits into help[b][1] : \
shift away the LONG_LENGTH mod p lower bits */ \
help1 = pattern >> lmp; \
for(i = (prime); i < LONG_LENGTH; i <<= 1) \
{ help0 |= help0 << i; } \
/* \
for(i = ldp; i; i--) \
{ pattern <<= (prime); help0 |= pattern; } \ */ \
} \
\
{ /* fill the bit pattern from help0/help1 into sieve[b][]. \
sieve[b][a0] has the same semantics as help0/help1, \
but here, a0 runs from 0 to p-1 and all bits are filled. */ \
register long a; \
unsigned long *si = (unsigned long *)args->ba_next; \
\
args->ba_next += (prime)*sizeof(ratpoints_bit_array); \
/* copy the first chunk into sieve[b][] */ \
si[0] = help0; \
/* now keep repeating the bit pattern, \
rotating it in help0/help1 */ \
for(a = 1 ; a < (prime); a++) \
{ register unsigned long temp = help0 >> diff; \
help0 = help1 | (help0 << diff_shift); \
si[a] = help0; \
help1 = temp; \
} \
/* copy into the next p long words */ \
for(a = 0; a < (prime); a++) \
{ si[a+(prime)] = si[a]; } \
/* set sieve array */ \
se->sieve[b] = (ratpoints_bit_array *)si; \
return((ratpoints_bit_array *)si); \
} } \
}
/* This is for p > LONG_LENGTH */
#define CODE_INIT_SIEVE2(prime) \
static ratpoints_bit_array *sieve_init_##prime(void *se1, long b1, void *args1) \
{ \
ratpoints_sieve_entry *se = se1; \
ratpoints_args *args = args1; \
register long p = (prime); \
register int *isfs = se->is_f_square; \
register long b = b1; \
/* long ldp = 0; = LONG_LENGTH / p */ \
/* long p1 = p; = (ldp + 1) * p; */ \
long wp = p >> LONG_SHIFT; \
long diff_shift = p & LONG_MASK; \
long diff = LONG_LENGTH - diff_shift; \
unsigned long help[(p>>LONG_SHIFT) + 2]; \
\
/* initialize help */ \
{ register unsigned long *he = &help[0]; \
register unsigned long *he1 = &he[(p>>LONG_SHIFT) + 2]; \
while(he1 != he) { he1--; *he1 = 0UL; } \
} \
{ register unsigned long work = 0UL; \
register long a; \
register long ab = 0; /* a/b mod p */ \
register long d = se->inverses[b]; \
register long n = 0; \
register unsigned long test = 1UL; \
for(a = 0; a < p; ) \
{ if(isfs[ab]) { work |= test; } \
ab += d; \
if(ab >= p) ab -= p; \
test <<= 1; \
a++; \
if((a & LONG_MASK) == 0) \
{ help[n] = work; n++; work = 0UL; test = 1UL; } \
} \
help[n] = work; \
} \
\
{ /* fill the bit pattern from help[] into sieve[b][]. \
sieve[b][a0] has the same semantics as help[b][a0], \
but here, a0 runs from 0 to p-1 and all bits are filled. */ \
register unsigned long *si = (unsigned long *)args->ba_next; \
register long a1; \
register long a; \
\
args->ba_next += p*sizeof(ratpoints_bit_array); \
/* copy the first chunk from help[] into sieve[num][b][] */ \
for(a = 0; a < wp; a++) si[a] = help[a]; \
/* now keep repeating the bit pattern, rotating it in help */ \
for(a1 = a ; a < p; a++) \
{ register long t = (a1 == wp) ? 0 : a1+1; \
help[a1] |= help[t]<<diff_shift; \
si[a] = help[a1]; \
a1 = t; \
help[a1] >>= diff; \
} \
/* copy into the next p long words */ \
for(a = 0; a < p; a++) \
{ si[a+p] = si[a]; } \
/* set sieve array */ \
se->sieve[b] = (ratpoints_bit_array *)si; \
return((ratpoints_bit_array *)si); \
} \
}
#else
/* The following is for primes < LONG_LENGTH */
#define CODE_INIT_SIEVE1(prime) \
static ratpoints_bit_array *sieve_init_##prime(void *se1, long b1, void *args1) \
{ \
ratpoints_sieve_entry *se = se1; \
ratpoints_args *args = args1; \
register int *isfs = se->is_f_square; \
register long b = b1; \
long lmp = LONG_LENGTH % (prime); \
long ldp = LONG_LENGTH / (prime); \
long p1 = (ldp + 1) * (prime); \
long diff_shift = p1 & LONG_MASK; \
long diff = LONG_LENGTH - diff_shift; \
register unsigned long help0;\
{ register long a; \
register long d = se->inverses[b]; \
register long ab = 0; /* a/b mod p */ \
register unsigned long test = 1UL; \
register unsigned long he0 = 0UL; \
for(a = 0; a < (prime); a++) \
{ if(isfs[ab]) { he0 |= test; } \
ab += d; \
if(ab >= (prime)) ab -= (prime); \
test <<= 1; \
} \
help0 = he0; \
} \
\
{ register unsigned long help1; \
{ /* repeat bit pattern floor(LONG_LENGTH/p) times */ \
register unsigned long pattern = help0; \
register long i; \
/* the p * (floor(LONG_LENGTH/p) + 1) - LONG_LENGTH \
= p - (LONG_LENGTH mod p) \
upper bits into help[b][1] : \
shift away the LONG_LENGTH mod p lower bits */ \
help1 = pattern >> lmp; \
for(i = (prime); i < LONG_LENGTH; i <<= 1) \
{ help0 |= help0 << i; } \
/* \
for(i = ldp; i; i--) \
{ pattern <<= (prime); help0 |= pattern; } \ */ \
} \
\
{ /* fill the bit pattern from help0/help1 into sieve[b][]. \
sieve[b][a0] has the same semantics as help0/help1, \
but here, a0 runs from 0 to p-1 and all bits are filled. */ \
register long a; \
unsigned long *si = (unsigned long *)args->ba_next; \
\
args->ba_next += (prime)*sizeof(ratpoints_bit_array); \
/* copy the first chunk into sieve[b][] */ \
si[0] = help0; \
/* now keep repeating the bit pattern, \
rotating it in help0/help1 */ \
for(a = 1 ; a < (prime); a++) \
{ register unsigned long temp = help0 >> diff; \
help0 = help1 | (help0 << diff_shift); \
si[a] = help0; \
help1 = temp; \
} \
/* set sieve array */ \
se->sieve[b] = (ratpoints_bit_array *)si; \
return((ratpoints_bit_array *)si); \
} } \
}
/* This is for p > LONG_LENGTH */
#define CODE_INIT_SIEVE2(prime) \
static ratpoints_bit_array *sieve_init_##prime(void *se1, long b1, void *args1) \
{ \
ratpoints_sieve_entry *se = se1; \
ratpoints_args *args = args1; \
register long p = (prime); \
register int *isfs = se->is_f_square; \
register long b = b1; \
/* long ldp = 0; = LONG_LENGTH / p */ \
/* long p1 = p; = (ldp + 1) * p; */ \
long wp = p >> LONG_SHIFT; \
long diff_shift = p & LONG_MASK; \
long diff = LONG_LENGTH - diff_shift; \
unsigned long help[(p>>LONG_SHIFT) + 2]; \
\
/* initialize help */ \
{ register unsigned long *he = &help[0]; \
register unsigned long *he1 = &he[(p>>LONG_SHIFT) + 2]; \
while(he1 != he) { he1--; *he1 = 0UL; } \
} \
{ register unsigned long work = 0UL; \
register long a; \
register long ab = 0; /* a/b mod p */ \
register long d = se->inverses[b]; \
register long n = 0; \
register unsigned long test = 1UL; \
for(a = 0; a < p; ) \
{ if(isfs[ab]) { work |= test; } \
ab += d; \
if(ab >= p) ab -= p; \
test <<= 1; \
a++; \
if((a & LONG_MASK) == 0) \
{ help[n] = work; n++; work = 0UL; test = 1UL; } \
} \
help[n] = work; \
} \
\
{ /* fill the bit pattern from help[] into sieve[b][]. \
sieve[b][a0] has the same semantics as help[b][a0], \
but here, a0 runs from 0 to p-1 and all bits are filled. */ \
register unsigned long *si = (unsigned long *)args->ba_next; \
register long a1; \
register long a; \
\
args->ba_next += p*sizeof(ratpoints_bit_array); \
/* copy the first chunk from help[] into sieve[num][b][] */ \
for(a = 0; a < wp; a++) si[a] = help[a]; \
/* now keep repeating the bit pattern, rotating it in help */ \
for(a1 = a ; a < p; a++) \
{ register long t = (a1 == wp) ? 0 : a1+1; \
help[a1] |= help[t]<<diff_shift; \
si[a] = help[a1]; \
a1 = t; \
help[a1] >>= diff; \
} \
/* set sieve array */ \
se->sieve[b] = (ratpoints_bit_array *)si; \
return((ratpoints_bit_array *)si); \
} \
}
#endif
#include "init_sieve.h"
|