1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#include <config.h>
#include <errno.h>
#include <fcntl.h>
#include <glib/gstdio.h>
#include <linux/major.h>
#include <linux/types.h> /* kernel < 3.4 forgot that in mmc/ioctl.h */
#include <linux/mmc/ioctl.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include "emmc.h"
#include "update_handler.h"
#include "utils.h"
GQuark r_emmc_error_quark(void)
{
return g_quark_from_static_string("r_emmc_error_quark");
}
static int r_emmc_read_extcsd(int fd, guint8 extcsd[512])
{
struct mmc_ioc_cmd cmd = {};
cmd.write_flag = 0;
cmd.opcode = MMC_SEND_EXT_CSD;
cmd.arg = 0;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.blksz = 512;
cmd.blocks = 1;
mmc_ioc_cmd_set_data(cmd, extcsd);
return ioctl(fd, MMC_IOC_CMD, &cmd);
}
gboolean r_emmc_read_bootpart(const gchar *device, gint *bootpart_active, GError **error)
{
guint8 extcsd[512];
g_auto(filedesc) fd = -1;
/* count from 1 */
gint active_partition = -1;
fd = g_open(device, O_RDONLY);
if (fd == -1) {
int err = errno;
g_set_error(error, G_FILE_ERROR, g_file_error_from_errno(err),
"opening eMMC device failed: %s", g_strerror(err));
return FALSE;
}
if (r_emmc_read_extcsd(fd, extcsd)) {
g_set_error(error, R_EMMC_ERROR, R_EMMC_ERROR_IOCTL,
"Could not read from extcsd register %d in %s",
EXT_CSD_PART_CONFIG, device);
return FALSE;
}
/* retrieve active partition from BOOT_PART register */
active_partition = (extcsd[EXT_CSD_PART_CONFIG] & 0x38) >> 3;
switch (active_partition) {
case 0x0: /* not boot enabled */
*bootpart_active = -1;
return TRUE;
case 0x1: /* boot0 / boot 1 */
/* fallthgrough */
case 0x2:
/* return the partitions counted from 0 */
*bootpart_active = active_partition - 1;
return TRUE;
case 0x7: /* user data area */
g_set_error(error,
R_EMMC_ERROR,
R_EMMC_ERROR_BOOTPART_UDA,
"Active eMMC partition is UDA when boot0/boot1 was expected.");
return FALSE;
default:
g_set_error(error,
R_EMMC_ERROR,
R_EMMC_ERROR_BOOTPART_INVALID,
"Invalid (Reserved) eMMC boot part number.");
return FALSE;
}
g_return_val_if_reached(FALSE);
}
static gint r_emmc_write_extcsd(int fd, guint8 index, guint8 value)
{
struct mmc_ioc_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.write_flag = 1;
cmd.opcode = MMC_SWITCH;
cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) |
(value << 8) | EXT_CSD_CMD_SET_NORMAL;
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
return ioctl(fd, MMC_IOC_CMD, &cmd);
}
gboolean r_emmc_write_bootpart(const gchar *device, gint bootpart_active, GError **error)
{
g_auto(filedesc) fd = -1;
guint8 extcsd[512];
guint8 value = 0;
g_return_val_if_fail(bootpart_active == 0 || bootpart_active == 1, FALSE);
fd = g_open(device, O_RDWR | O_EXCL);
if (fd == -1) {
int err = errno;
g_set_error(error, G_FILE_ERROR, g_file_error_from_errno(err),
"opening eMMC device failed: %s", g_strerror(err));
return FALSE;
}
if (r_emmc_read_extcsd(fd, extcsd)) {
g_set_error(error, R_EMMC_ERROR, R_EMMC_ERROR_IOCTL,
"Could not read from extcsd register %d in %s",
EXT_CSD_PART_CONFIG, device);
return FALSE;
}
/* Keep BOOT_ACK value as it is. Resetting this bit might prevent
* proper boot process on some platforms since in some SoCs, ROM boot
* loaders need this flag to be set.
* The PARTITION_ACCESS value is handled inside the kernel so we do not
* need to take care of it here. */
value = extcsd[EXT_CSD_PART_CONFIG] & (1 << 6);
/* write [5:3] : BOOT_PARTITION_ENABLE of PARTITION_CONFIG */
if (bootpart_active == 0)
value |= 0x08;
else if (bootpart_active == 1)
value |= 0x10;
if (r_emmc_write_extcsd(fd, EXT_CSD_PART_CONFIG, value)) {
g_set_error(error, R_EMMC_ERROR, R_EMMC_ERROR_IOCTL,
"Could not write 0x%02x to extcsd register %d in %s",
value, EXT_CSD_PART_CONFIG, device);
return FALSE;
}
return TRUE;
}
static gboolean r_emmc_force_part_write(const gchar *device, gchar value, GError **error)
{
gboolean ret = FALSE;
g_autofree gchar *device_basename = g_path_get_basename(device);
g_autofree gchar *sysfs_path = NULL;
FILE *f = NULL;
g_return_val_if_fail(value == '0' || value == '1', FALSE);
sysfs_path = g_strdup_printf("/sys/block/%s/force_ro", device_basename);
f = g_fopen(sysfs_path, "w");
if (!f) {
int err = errno;
g_set_error(error, G_FILE_ERROR, g_file_error_from_errno(err),
"Could not open device attribute %s: %s",
sysfs_path, g_strerror(err));
goto out;
}
if (fwrite(&value, 1, 1, f) != 1) {
g_set_error(error, G_FILE_ERROR, G_FILE_ERROR_FAILED,
"Could not write to %s", sysfs_path);
goto out;
}
ret = TRUE;
out:
if (f)
fclose(f);
return ret;
}
gboolean r_emmc_force_part_ro(const gchar *device, GError **error)
{
gboolean ret = FALSE;
GError *ierror = NULL;
ret = r_emmc_force_part_write(device, '1', &ierror);
if (!ret)
g_propagate_prefixed_error(error, ierror,
"failed forcing ro: ");
return ret;
}
gboolean r_emmc_force_part_rw(const gchar *device, GError **error)
{
gboolean ret = FALSE;
GError *ierror = NULL;
ret = r_emmc_force_part_write(device, '0', &ierror);
if (!ret)
g_propagate_prefixed_error(error, ierror,
"failed forcing rw: ");
return ret;
}
|