1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/* RAxML-VI-HPC (version 2.2) a program for sequential and parallel estimation of phylogenetic trees
* Copyright August 2006 by Alexandros Stamatakis
*
* Partially derived from
* fastDNAml, a program for estimation of phylogenetic trees from sequences by Gary J. Olsen
*
* and
*
* Programs of the PHYLIP package by Joe Felsenstein.
*
* This program is free software; you may redistribute it and/or modify its
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
*
* For any other enquiries send an Email to Alexandros Stamatakis
* Alexandros.Stamatakis@epfl.ch
*
* When publishing work that is based on the results from RAxML-VI-HPC please cite:
*
* Alexandros Stamatakis:"RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands
* of taxa and mixed models".
* Bioinformatics 2006; doi: 10.1093/bioinformatics/btl446
*/
#include <math.h>
#include <assert.h>
static void mytred2(double **a, const int n, double *d, double *e)
{
int l, k, j, i;
double scale, hh, h, g, f;
for (i = n; i > 1; i--)
{
l = i - 1;
h = 0.0;
scale = 0.0;
if (l > 1)
{
for (k = 1; k <= l; k++)
scale += fabs(a[k - 1][i - 1]);
if (scale == 0.0)
e[i - 1] = a[l - 1][i - 1];
else
{
for (k = 1; k <= l; k++)
{
a[k - 1][i - 1] /= scale;
h += a[k - 1][i - 1] * a[k - 1][i - 1];
}
f = a[l - 1][i - 1];
g = ((f > 0) ? -sqrt(h) : sqrt(h)); /* diff */
e[i - 1] = scale * g;
h -= f * g;
a[l - 1][i - 1] = f - g;
f = 0.0;
for (j = 1; j <= l; j++)
{
a[i - 1][j - 1] = a[j - 1][i - 1] / h;
g = 0.0;
for (k = 1; k <= j; k++)
g += a[k - 1][j - 1] * a[k - 1][i - 1];
for (k = j + 1; k <= l; k++)
g += a[j - 1][k - 1] * a[k - 1][i - 1];
e[j - 1] = g / h;
f += e[j - 1] * a[j - 1][i - 1];
}
hh = f / (h + h);
for (j = 1; j <= l; j++)
{
f = a[j - 1][i - 1];
g = e[j - 1] - hh * f;
e[j - 1] = g;
for (k = 1; k <= j; k++)
a[k - 1][j - 1] -= (f * e[k - 1] + g * a[k - 1][i - 1]);
}
}
}
else
e[i - 1] = a[l - 1][i - 1];
d[i - 1] = h;
}
d[0] = 0.0;
e[0] = 0.0;
for (i = 1; i <= n; i++)
{
l = i - 1;
if (d[i - 1] != 0.0)
{
for (j = 1; j <= l; j++)
{
g = 0.0;
for (k = 1; k <= l; k++)
g += a[k - 1][i - 1] * a[j - 1][k - 1];
for(k = 1; k <= l; k++)
a[j - 1][k - 1] -= g * a[i - 1][k - 1];
}
}
d[i - 1] = a[i - 1][i - 1];
a[i - 1][i - 1] = 1.0;
for (j = 1; j <= l; j++)
a[i - 1][j - 1] = a[j - 1][i - 1] = 0.0;
}
}
/*#define MYSIGN(a,b) ((b)<0 ? -fabs(a) : fabs(a))*/
static int mytqli(double *d, double *e, const int n, double **z)
{
int m, l, iter, i, k;
double s, r, p, g, f, dd, c, b;
for (i = 2; i <= n; i++)
e[i - 2] = e[i - 1];
e[n - 1] = 0.0;
for (l = 1; l <= n; l++)
{
iter = 0;
do
{
for (m = l; m <= n - 1; m++)
{
dd = fabs(d[m - 1]) + fabs(d[m]);
if (fabs(e[m - 1]) + dd == dd)
break;
}
if (m != l)
{
assert(iter < 30);
g = (d[l] - d[l - 1]) / (2.0 * e[l - 1]);
r = sqrt((g * g) + 1.0);
g = d[m - 1] - d[l - 1] + e[l - 1] / (g + ((g < 0)?-fabs(r):fabs(r)));/*MYSIGN(r, g));*/
s = c = 1.0;
p = 0.0;
for (i = m - 1; i >= l; i--)
{
f = s * e[i - 1];
b = c * e[i - 1];
if (fabs(f) >= fabs(g))
{
c = g / f;
r = sqrt((c * c) + 1.0);
e[i] = f * r;
c *= (s = 1.0 / r);
}
else
{
s = f / g;
r = sqrt((s * s) + 1.0);
e[i] = g * r;
s *= (c = 1.0 / r);
}
g = d[i] - p;
r = (d[i - 1] - g) * s + 2.0 * c * b;
p = s * r;
d[i] = g + p;
g = c * r - b;
for (k = 1; k <= n; k++)
{
f = z[i][k-1];
z[i][k-1] = s * z[i - 1][k - 1] + c * f;
z[i - 1][k - 1] = c * z[i - 1][k - 1] - s * f;
}
}
d[l - 1] = d[l - 1] - p;
e[l - 1] = g;
e[m - 1] = 0.0;
}
}
while (m != l);
}
return (1);
}
void makeEigen(double **_a, const int n, double *d, double *e)
{
mytred2(_a, n, d, e);
mytqli(d, e, n, _a);
}
|