File: rmqs.c

package info (click to toggle)
raxml 8.2.13%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 5,452 kB
  • sloc: ansic: 63,646; perl: 125; sh: 63; makefile: 52
file content (372 lines) | stat: -rw-r--r-- 12,755 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#include "rmqs.h"
#include "axml.h"
#include <assert.h>

static const DTidx Catalan[17][17] = {
	{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
	{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},
	{0,0,2,5,9,14,20,27,35,44,54,65,77,90,104,119,135},
	{0,0,0,5,14,28,48,75,110,154,208,273,350,440,544,663,798},
	{0,0,0,0,14,42,90,165,275,429,637,910,1260,1700,2244,2907,3705},
	{0,0,0,0,0,42,132,297,572,1001,1638,2548,3808,5508,7752,10659,14364},
	{0,0,0,0,0,0,132,429,1001,2002,3640,6188,9996,15504,23256,33915,48279},
	{0,0,0,0,0,0,0,429,1430,3432,7072,13260,23256,38760,62016,95931,144210},
	{0,0,0,0,0,0,0,0,1430,4862,11934,25194,48450,87210,149226,245157,389367},
	{0,0,0,0,0,0,0,0,0,4862,16796,41990,90440,177650,326876,572033,961400},
	{0,0,0,0,0,0,0,0,0,0,16796,58786,149226,326876,653752,1225785,2187185},
	{0,0,0,0,0,0,0,0,0,0,0,58786,208012,534888,1188640,2414425,4601610},
	{0,0,0,0,0,0,0,0,0,0,0,0,208012,742900,1931540,4345965,8947575},
	{0,0,0,0,0,0,0,0,0,0,0,0,0,742900,2674440,7020405,15967980},
	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2674440,9694845,25662825},
	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9694845,35357670},
	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35357670}
};

static const DT minus_infinity = INT_MIN;

static const char LSBTable256[256] = 
	{
		0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
		4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0
	};

DTidx lsb(DTsucc v) {
	return LSBTable256[v];
}

static const char LogTable256[256] = 
	{
		0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
		4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
		5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
		5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
		6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
		6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
		6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
		6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
		7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
	};

static DTidx log2fast(DTidx v) {
	DTidx c = 0;          // c will be lg(v)
	register DTidx t, tt; // temporaries

	if ((tt = v >> 16))
		c = (t = v >> 24) ? 24 + LogTable256[t] : 16 + LogTable256[tt & 0xFF];
	else 
		c = (t = v >> 8) ? 8 + LogTable256[t] : LogTable256[v];
	return c;
}

static const DTsucc HighestBitsSet[8] = {~0, ~1, ~3, ~7, ~15, ~31, ~63, ~127};

static DTsucc clearbits(DTsucc n, DTidx x) {
	return n & HighestBitsSet[x];
}

static inline DTidx m(DTidx k, DTidx block) { return M[k][block]+(block*sprime); }
static inline DTidx microblock(DTidx i) { return i/s; }
static inline DTidx block(DTidx i) { return i/sprime; }
static inline DTidx superblock(DTidx i) { return i/sprimeprime; }

DTidx query(DTidx i, DTidx j) {
	DTidx mb_i = microblock(i);     // i's microblock
	DTidx mb_j = microblock(j);     // j's microblock
	DTidx min, min_tmp;             // min: to be returned
	DTidx s_mi = mb_i * s;          // start of i's microblock
	DTidx i_pos = i - s_mi;         // pos. of i in its microblock
        DTidx x;

	if (ARRAY_VERY_SMALL) { // scan naively
	  min = i;
	  for (x = i+1; x <= j; x++) if (a[x] < a[min]) min = x;
	}
	else if (mb_i == mb_j) { // only one in-microblock-query
		min_tmp = clearbits(Prec[type[mb_i]][j-s_mi], i_pos);
		min = min_tmp == 0 ? j : s_mi + lsb(min_tmp);
	}
	else { 
		DTidx b_i = block(i);      // i's block
		DTidx b_j = block(j);      // j's block
		DTidx s_mj = mb_j * s;     // start of j's microblock
		DTidx j_pos = j - s_mj;    // position of j in its microblock
		min_tmp = clearbits(Prec[type[mb_i]][s-1], i_pos);
		min = min_tmp == 0 ? s_mi + s - 1 : s_mi + lsb(min_tmp); // left in-microblock-query

		if (mb_j > mb_i + 1) { // otherwise only 2 in-microblock-queries
			DTidx s_bi = b_i * sprime;      // start of i's block
			DTidx s_bj = b_j * sprime;      // start of j's block
			if (s_bi+s > i) { // do another microblock-query to compensate for missing block-layer
				mb_i++;   // go one microblock to the right
				min_tmp = Prec[type[mb_i]][s-1] == 0 ?
					s_bi + sprime - 1 : s_mi + s + lsb(Prec[type[mb_i]][s-1]);
				if (a[min_tmp] < a[min]) min = min_tmp;
			}

			if (b_j > b_i + 1) { // otherwise no out-of-block-queries
				DTidx k, t, b;  // temporary variables
				b_i++; // block where out-of-block-query starts
				if (s_bj - s_bi - sprime <= sprimeprime) { // just one out-of-block-query
					k = log2fast(b_j - b_i - 1);
					t = 1 << k; // 2^k
					i = m(k, b_i); b = m(k, b_j-t); // i can be overwritten!
					min_tmp = a[i] <= a[b] ? i : b;
					if (a[min_tmp] < a[min]) min = min_tmp;
				}
				else { // here we have two out-of-block-queries:
 					DTidx sb_i = superblock(i); // i's superblock
 					DTidx sb_j = superblock(j); // j's superblock

 					b = block((sb_i+1)*sprimeprime); // end of left out-of-block-query
 					k = log2fast(b - b_i);
 					t = 1 << k; // 2^k
 					i = m(k, b_i); i_pos = m(k, b+1-t); // i & i_pos can be overwritten!
 					min_tmp = a[i] <= a[i_pos] ? i : i_pos;
					if (a[min_tmp] < a[min]) min = min_tmp;

					if (sb_j > sb_i + 1) { // the superblock-query
						k = log2fast(sb_j - sb_i - 2);
						t = 1 << k;
						i = Mprime[k][sb_i+1]; i_pos = Mprime[k][sb_j-t];
						min_tmp = a[i] <= a[i_pos] ? i : i_pos;
						if (a[min_tmp] < a[min]) min = min_tmp;
					}

					b = block(sb_j*sprimeprime); // start of right out-of-block-query
					k = log2fast(b_j - b);
					t = 1 << k; // 2^k
					b--; // going one block to the left doesn't harm and saves some tests
					i = m(k, b); i_pos = m(k, b_j-t);
					min_tmp = a[i] <= a[i_pos] ? i : i_pos;
					if (a[min_tmp] < a[min]) min = min_tmp;
				}
			}

			if (j >= s_bj+s) { // another microblock-query to compensate for missing block-layer
				min_tmp = Prec[type[mb_j-1]][s-1] == 0 ?
					s_mj - 1 : s_bj + lsb(Prec[type[mb_j-1]][s-1]);
				if (a[min_tmp] < a[min]) min = min_tmp;
			}
		}

		min_tmp = Prec[type[mb_j]][j_pos] == 0 ?
			j : s_mj + lsb(Prec[type[mb_j]][j_pos]);     // right in-microblock-query
		if (a[min_tmp] < a[min]) min = min_tmp;

	}

	return min;
}

/**
 * Standard Constructor. a is the array to be prepared for RMQ.
 * n is the size of the array.
 */
void RMQ_succinct(DT* _a, DTidx _n) {
        DTidx i, j;
	a = _a;
	n = _n;
	s = 1 << 3;	         // microblock-size
	sprime = 1 << 4;         // block-size
	sprimeprime = 1 << 8;	 // superblock-size
	nb = block(_n-1)+1;       // number of blocks
	nsb = superblock(_n-1)+1; // number of superblocks
	nmb = microblock(_n-1)+1; // number of microblocks

	// The following is necessary because we've fixed s, s' and s'' according to the computer's
	// word size and NOT according to the input size. This may cause the (super-)block-size
	// to be too big, or, in other words, the array too small. If this code is compiled on
	// a 32-bit computer, this happens iff n < 113. For such small instances it isn't 
	// advisable anyway to use this data structure, because simpler methods are faster and 
	// less space consuming.
	ARRAY_VERY_SMALL = false;
	if (nb<sprimeprime/(2*sprime)) { ARRAY_VERY_SMALL = true; return; }

	// Type-calculation for the microblocks and pre-computation of in-microblock-queries:
	type = (DTsucc2 *) rax_malloc (sizeof (DTsucc2) * nmb);
#ifdef MEM_COUNT
	uint64_t mem = sizeof(DTsucc2)*nmb;
#endif
	Prec = (DTsucc ** ) rax_malloc (sizeof (DTsucc *) * Catalan[s][s]);
	for (i = 0; i < Catalan[s][s]; i++) {
		Prec[i] = (DTsucc *)rax_malloc (sizeof (DTsucc) * s);
#ifdef MEM_COUNT
		mem += sizeof(DTsucc)*s;
#endif
		Prec[i][0] = 1; // init with impossible value
	}

	DT* rp = (DT *) rax_malloc ( sizeof (DT) * (s+1));   // rp: rightmost path in Cart. tree
	DTidx z = 0;            // index in array a
	DTidx start;            // start of current block
	DTidx end;              // end of current block
	DTidx q;                // position in Catalan triangle
	DTidx p;                // --------- " ----------------
	rp[0] = minus_infinity; // stopper (minus infinity)

	// prec[i]: the jth bit is 1 iff j is 1. pos. to the left of i where a[j] < a[i] 
	DTidx* gstack = (DTidx *) rax_malloc (sizeof (DTidx) * s);
	DTidx gstacksize;
	DTidx g; // first position to the left of i where a[g[i]] < a[i]

	for (i = 0; i < nmb; i++) { // step through microblocks
		start = z;            // init start
		end = start + s;      // end of block (not inclusive!)
		if (end > n) end = n; // last block could be smaller than s!

		// compute block type as in Fischer/Heun CPM'06:
		q = s;        // init q
		p = s-1;      // init p
		type[i] = 0;  // init type (will be increased!)
		rp[1] = a[z]; // init rightmost path

		while (++z < end) {   // step through current block:
			p--;
			while (rp[q-p-1] > a[z]) {
				type[i] += Catalan[p][q]; // update type
				q--;
			}
			rp[q-p] = a[z]; // add last element to rightmost path
		}

		// precompute in-block-queries for this microblock (if necessary)
		// as in Alstrup et al. SPAA'02:
		if (Prec[type[i]][0] == 1) {
			Prec[type[i]][0] = 0;
			gstacksize = 0;
			for (j = start; j < end; j++) {
				while(gstacksize > 0 && (a[j] < a[gstack[gstacksize-1]])) {
					gstacksize--;
				}
				if(gstacksize > 0) {
					g = gstack[gstacksize-1];
					Prec[type[i]][j-start] = Prec[type[i]][g-start] | (1 << (g % s));
				}
				else Prec[type[i]][j-start] = 0;
				gstack[gstacksize++] = j;
			}
		}
	}
	//delete[] rp;
        rax_free (rp);
	//delete[] gstack;
        rax_free (gstack);

	// space for out-of-block- and out-of-superblock-queries:
	{
	  double
	    a = floor(log2(((double) sprimeprime / (double) sprime)));

	  assert(a >= 0.0);

	  M_depth = (DTidx)a;
	}
	M = (DTsucc **) rax_malloc (sizeof (DTsucc *) * M_depth);
	M[0] = (DTsucc *) rax_malloc (sizeof (DTsucc) * nb);
#ifdef MEM_COUNT
	mem += sizeof(DTsucc)*nb;
#endif
	{
	  double 
	    a =  floor(log2(nsb));

	  assert(a >= 0.0);
	  
	  Mprime_depth = (DTidx)a + 1;
	}
	Mprime = (DTidx **) rax_malloc (sizeof (DTidx *) * Mprime_depth);
	Mprime[0] = (DTidx *) rax_malloc (sizeof (DTidx) * nsb);
#ifdef MEM_COUNT
	mem += sizeof(DTidx)*nsb;
#endif

	// fill 0'th rows of M and Mprime:
	z = 0; // minimum in current block
	q = 0; // pos. of min in current superblock
	g = 0; // number of current superblock
	for (i = 0; i < nb; i++) { // step through blocks
		start = z;              // init start
		p = start;              // init minimum
		end = start + sprime;   // end of block (not inclusive!)
		if (end > n) end = n;   // last block could be smaller than sprime!
		if (a[z] < a[q]) q = z; // update minimum in superblock

		while (++z < end) { // step through current block:
			if (a[z] < a[p]) p = z; // update minimum in block
			if (a[z] < a[q]) q = z; // update minimum in superblock
		}
		M[0][i] = p-start;                     // store index of block-minimum (offset!)
		if (z % sprimeprime == 0 || z == n) {  // reached end of superblock?
			Mprime[0][g++] = q;               // store index of superblock-minimum
			q = z;
		}
	}

	// fill M:
	DTidx dist = 1; // always 2^(j-1)
	for (j = 1; j < M_depth; j++) {
		M[j] = (DTsucc *) rax_malloc (sizeof (DTsucc) * nb);
#ifdef MEM_COUNT
	    mem += sizeof(DTsucc)*nb;
#endif
		for (i = 0; i < nb - dist; i++) { // be careful: loop may go too far
			M[j][i] = a[m(j-1, i)] <= a[m(j-1,i+dist)] ?
				M[j-1][i] : M[j-1][i+dist] + (dist*sprime); // add 'skipped' elements in a
		}
		for (i = nb - dist; i < nb; i++) M[j][i] = M[j-1][i]; // fill overhang
		dist *= 2;
	}

	// fill M':
	dist = 1; // always 2^(j-1)
	for (j = 1; j < Mprime_depth; j++) {
		Mprime[j] = (DTidx *) rax_malloc (sizeof (DTidx) * nsb);
#ifdef MEM_COUNT
        mem += sizeof(DTidx)*nsb;
#endif
		for (i = 0; i < nsb - dist; i++) {
			Mprime[j][i] = a[Mprime[j-1][i]] <= a[Mprime[j-1][i+dist]] ?
				Mprime[j-1][i] : Mprime[j-1][i+dist];
		}
		for (i = nsb - dist; i < nsb; i++) Mprime[j][i] = Mprime[j-1][i]; // overhang
		dist *= 2;
	}
#ifdef MEM_COUNT
	printf ("allocated %" PRIu64  " bytes\n", mem);
#endif
}

/**
 * Destructor. Deletes allocated space.
 */
void RMQ_succinct_destroy(void) {
        DTidx i;
	rax_free (type);
	if (Prec) for (i = 0; i < Catalan[s][s]; i++) rax_free (Prec[i]);
	rax_free (Prec);
	if (M) for (i = 0; i < M_depth; i++) rax_free (M[i]);
	rax_free (M);
	if (Mprime) for (i = 0; i < Mprime_depth; i++) rax_free (Mprime[i]);
	rax_free (Mprime);
}