1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
#include "rmqs.h"
#include "axml.h"
#include <assert.h>
static const DTidx Catalan[17][17] = {
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},
{0,0,2,5,9,14,20,27,35,44,54,65,77,90,104,119,135},
{0,0,0,5,14,28,48,75,110,154,208,273,350,440,544,663,798},
{0,0,0,0,14,42,90,165,275,429,637,910,1260,1700,2244,2907,3705},
{0,0,0,0,0,42,132,297,572,1001,1638,2548,3808,5508,7752,10659,14364},
{0,0,0,0,0,0,132,429,1001,2002,3640,6188,9996,15504,23256,33915,48279},
{0,0,0,0,0,0,0,429,1430,3432,7072,13260,23256,38760,62016,95931,144210},
{0,0,0,0,0,0,0,0,1430,4862,11934,25194,48450,87210,149226,245157,389367},
{0,0,0,0,0,0,0,0,0,4862,16796,41990,90440,177650,326876,572033,961400},
{0,0,0,0,0,0,0,0,0,0,16796,58786,149226,326876,653752,1225785,2187185},
{0,0,0,0,0,0,0,0,0,0,0,58786,208012,534888,1188640,2414425,4601610},
{0,0,0,0,0,0,0,0,0,0,0,0,208012,742900,1931540,4345965,8947575},
{0,0,0,0,0,0,0,0,0,0,0,0,0,742900,2674440,7020405,15967980},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2674440,9694845,25662825},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9694845,35357670},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35357670}
};
static const DT minus_infinity = INT_MIN;
static const char LSBTable256[256] =
{
0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0
};
DTidx lsb(DTsucc v) {
return LSBTable256[v];
}
static const char LogTable256[256] =
{
0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
};
static DTidx log2fast(DTidx v) {
DTidx c = 0; // c will be lg(v)
register DTidx t, tt; // temporaries
if ((tt = v >> 16))
c = (t = v >> 24) ? 24 + LogTable256[t] : 16 + LogTable256[tt & 0xFF];
else
c = (t = v >> 8) ? 8 + LogTable256[t] : LogTable256[v];
return c;
}
static const DTsucc HighestBitsSet[8] = {~0, ~1, ~3, ~7, ~15, ~31, ~63, ~127};
static DTsucc clearbits(DTsucc n, DTidx x) {
return n & HighestBitsSet[x];
}
static inline DTidx m(DTidx k, DTidx block) { return M[k][block]+(block*sprime); }
static inline DTidx microblock(DTidx i) { return i/s; }
static inline DTidx block(DTidx i) { return i/sprime; }
static inline DTidx superblock(DTidx i) { return i/sprimeprime; }
DTidx query(DTidx i, DTidx j) {
DTidx mb_i = microblock(i); // i's microblock
DTidx mb_j = microblock(j); // j's microblock
DTidx min, min_tmp; // min: to be returned
DTidx s_mi = mb_i * s; // start of i's microblock
DTidx i_pos = i - s_mi; // pos. of i in its microblock
DTidx x;
if (ARRAY_VERY_SMALL) { // scan naively
min = i;
for (x = i+1; x <= j; x++) if (a[x] < a[min]) min = x;
}
else if (mb_i == mb_j) { // only one in-microblock-query
min_tmp = clearbits(Prec[type[mb_i]][j-s_mi], i_pos);
min = min_tmp == 0 ? j : s_mi + lsb(min_tmp);
}
else {
DTidx b_i = block(i); // i's block
DTidx b_j = block(j); // j's block
DTidx s_mj = mb_j * s; // start of j's microblock
DTidx j_pos = j - s_mj; // position of j in its microblock
min_tmp = clearbits(Prec[type[mb_i]][s-1], i_pos);
min = min_tmp == 0 ? s_mi + s - 1 : s_mi + lsb(min_tmp); // left in-microblock-query
if (mb_j > mb_i + 1) { // otherwise only 2 in-microblock-queries
DTidx s_bi = b_i * sprime; // start of i's block
DTidx s_bj = b_j * sprime; // start of j's block
if (s_bi+s > i) { // do another microblock-query to compensate for missing block-layer
mb_i++; // go one microblock to the right
min_tmp = Prec[type[mb_i]][s-1] == 0 ?
s_bi + sprime - 1 : s_mi + s + lsb(Prec[type[mb_i]][s-1]);
if (a[min_tmp] < a[min]) min = min_tmp;
}
if (b_j > b_i + 1) { // otherwise no out-of-block-queries
DTidx k, t, b; // temporary variables
b_i++; // block where out-of-block-query starts
if (s_bj - s_bi - sprime <= sprimeprime) { // just one out-of-block-query
k = log2fast(b_j - b_i - 1);
t = 1 << k; // 2^k
i = m(k, b_i); b = m(k, b_j-t); // i can be overwritten!
min_tmp = a[i] <= a[b] ? i : b;
if (a[min_tmp] < a[min]) min = min_tmp;
}
else { // here we have two out-of-block-queries:
DTidx sb_i = superblock(i); // i's superblock
DTidx sb_j = superblock(j); // j's superblock
b = block((sb_i+1)*sprimeprime); // end of left out-of-block-query
k = log2fast(b - b_i);
t = 1 << k; // 2^k
i = m(k, b_i); i_pos = m(k, b+1-t); // i & i_pos can be overwritten!
min_tmp = a[i] <= a[i_pos] ? i : i_pos;
if (a[min_tmp] < a[min]) min = min_tmp;
if (sb_j > sb_i + 1) { // the superblock-query
k = log2fast(sb_j - sb_i - 2);
t = 1 << k;
i = Mprime[k][sb_i+1]; i_pos = Mprime[k][sb_j-t];
min_tmp = a[i] <= a[i_pos] ? i : i_pos;
if (a[min_tmp] < a[min]) min = min_tmp;
}
b = block(sb_j*sprimeprime); // start of right out-of-block-query
k = log2fast(b_j - b);
t = 1 << k; // 2^k
b--; // going one block to the left doesn't harm and saves some tests
i = m(k, b); i_pos = m(k, b_j-t);
min_tmp = a[i] <= a[i_pos] ? i : i_pos;
if (a[min_tmp] < a[min]) min = min_tmp;
}
}
if (j >= s_bj+s) { // another microblock-query to compensate for missing block-layer
min_tmp = Prec[type[mb_j-1]][s-1] == 0 ?
s_mj - 1 : s_bj + lsb(Prec[type[mb_j-1]][s-1]);
if (a[min_tmp] < a[min]) min = min_tmp;
}
}
min_tmp = Prec[type[mb_j]][j_pos] == 0 ?
j : s_mj + lsb(Prec[type[mb_j]][j_pos]); // right in-microblock-query
if (a[min_tmp] < a[min]) min = min_tmp;
}
return min;
}
/**
* Standard Constructor. a is the array to be prepared for RMQ.
* n is the size of the array.
*/
void RMQ_succinct(DT* _a, DTidx _n) {
DTidx i, j;
a = _a;
n = _n;
s = 1 << 3; // microblock-size
sprime = 1 << 4; // block-size
sprimeprime = 1 << 8; // superblock-size
nb = block(_n-1)+1; // number of blocks
nsb = superblock(_n-1)+1; // number of superblocks
nmb = microblock(_n-1)+1; // number of microblocks
// The following is necessary because we've fixed s, s' and s'' according to the computer's
// word size and NOT according to the input size. This may cause the (super-)block-size
// to be too big, or, in other words, the array too small. If this code is compiled on
// a 32-bit computer, this happens iff n < 113. For such small instances it isn't
// advisable anyway to use this data structure, because simpler methods are faster and
// less space consuming.
ARRAY_VERY_SMALL = false;
if (nb<sprimeprime/(2*sprime)) { ARRAY_VERY_SMALL = true; return; }
// Type-calculation for the microblocks and pre-computation of in-microblock-queries:
type = (DTsucc2 *) rax_malloc (sizeof (DTsucc2) * nmb);
#ifdef MEM_COUNT
uint64_t mem = sizeof(DTsucc2)*nmb;
#endif
Prec = (DTsucc ** ) rax_malloc (sizeof (DTsucc *) * Catalan[s][s]);
for (i = 0; i < Catalan[s][s]; i++) {
Prec[i] = (DTsucc *)rax_malloc (sizeof (DTsucc) * s);
#ifdef MEM_COUNT
mem += sizeof(DTsucc)*s;
#endif
Prec[i][0] = 1; // init with impossible value
}
DT* rp = (DT *) rax_malloc ( sizeof (DT) * (s+1)); // rp: rightmost path in Cart. tree
DTidx z = 0; // index in array a
DTidx start; // start of current block
DTidx end; // end of current block
DTidx q; // position in Catalan triangle
DTidx p; // --------- " ----------------
rp[0] = minus_infinity; // stopper (minus infinity)
// prec[i]: the jth bit is 1 iff j is 1. pos. to the left of i where a[j] < a[i]
DTidx* gstack = (DTidx *) rax_malloc (sizeof (DTidx) * s);
DTidx gstacksize;
DTidx g; // first position to the left of i where a[g[i]] < a[i]
for (i = 0; i < nmb; i++) { // step through microblocks
start = z; // init start
end = start + s; // end of block (not inclusive!)
if (end > n) end = n; // last block could be smaller than s!
// compute block type as in Fischer/Heun CPM'06:
q = s; // init q
p = s-1; // init p
type[i] = 0; // init type (will be increased!)
rp[1] = a[z]; // init rightmost path
while (++z < end) { // step through current block:
p--;
while (rp[q-p-1] > a[z]) {
type[i] += Catalan[p][q]; // update type
q--;
}
rp[q-p] = a[z]; // add last element to rightmost path
}
// precompute in-block-queries for this microblock (if necessary)
// as in Alstrup et al. SPAA'02:
if (Prec[type[i]][0] == 1) {
Prec[type[i]][0] = 0;
gstacksize = 0;
for (j = start; j < end; j++) {
while(gstacksize > 0 && (a[j] < a[gstack[gstacksize-1]])) {
gstacksize--;
}
if(gstacksize > 0) {
g = gstack[gstacksize-1];
Prec[type[i]][j-start] = Prec[type[i]][g-start] | (1 << (g % s));
}
else Prec[type[i]][j-start] = 0;
gstack[gstacksize++] = j;
}
}
}
//delete[] rp;
rax_free (rp);
//delete[] gstack;
rax_free (gstack);
// space for out-of-block- and out-of-superblock-queries:
{
double
a = floor(log2(((double) sprimeprime / (double) sprime)));
assert(a >= 0.0);
M_depth = (DTidx)a;
}
M = (DTsucc **) rax_malloc (sizeof (DTsucc *) * M_depth);
M[0] = (DTsucc *) rax_malloc (sizeof (DTsucc) * nb);
#ifdef MEM_COUNT
mem += sizeof(DTsucc)*nb;
#endif
{
double
a = floor(log2(nsb));
assert(a >= 0.0);
Mprime_depth = (DTidx)a + 1;
}
Mprime = (DTidx **) rax_malloc (sizeof (DTidx *) * Mprime_depth);
Mprime[0] = (DTidx *) rax_malloc (sizeof (DTidx) * nsb);
#ifdef MEM_COUNT
mem += sizeof(DTidx)*nsb;
#endif
// fill 0'th rows of M and Mprime:
z = 0; // minimum in current block
q = 0; // pos. of min in current superblock
g = 0; // number of current superblock
for (i = 0; i < nb; i++) { // step through blocks
start = z; // init start
p = start; // init minimum
end = start + sprime; // end of block (not inclusive!)
if (end > n) end = n; // last block could be smaller than sprime!
if (a[z] < a[q]) q = z; // update minimum in superblock
while (++z < end) { // step through current block:
if (a[z] < a[p]) p = z; // update minimum in block
if (a[z] < a[q]) q = z; // update minimum in superblock
}
M[0][i] = p-start; // store index of block-minimum (offset!)
if (z % sprimeprime == 0 || z == n) { // reached end of superblock?
Mprime[0][g++] = q; // store index of superblock-minimum
q = z;
}
}
// fill M:
DTidx dist = 1; // always 2^(j-1)
for (j = 1; j < M_depth; j++) {
M[j] = (DTsucc *) rax_malloc (sizeof (DTsucc) * nb);
#ifdef MEM_COUNT
mem += sizeof(DTsucc)*nb;
#endif
for (i = 0; i < nb - dist; i++) { // be careful: loop may go too far
M[j][i] = a[m(j-1, i)] <= a[m(j-1,i+dist)] ?
M[j-1][i] : M[j-1][i+dist] + (dist*sprime); // add 'skipped' elements in a
}
for (i = nb - dist; i < nb; i++) M[j][i] = M[j-1][i]; // fill overhang
dist *= 2;
}
// fill M':
dist = 1; // always 2^(j-1)
for (j = 1; j < Mprime_depth; j++) {
Mprime[j] = (DTidx *) rax_malloc (sizeof (DTidx) * nsb);
#ifdef MEM_COUNT
mem += sizeof(DTidx)*nsb;
#endif
for (i = 0; i < nsb - dist; i++) {
Mprime[j][i] = a[Mprime[j-1][i]] <= a[Mprime[j-1][i+dist]] ?
Mprime[j-1][i] : Mprime[j-1][i+dist];
}
for (i = nsb - dist; i < nsb; i++) Mprime[j][i] = Mprime[j-1][i]; // overhang
dist *= 2;
}
#ifdef MEM_COUNT
printf ("allocated %" PRIu64 " bytes\n", mem);
#endif
}
/**
* Destructor. Deletes allocated space.
*/
void RMQ_succinct_destroy(void) {
DTidx i;
rax_free (type);
if (Prec) for (i = 0; i < Catalan[s][s]; i++) rax_free (Prec[i]);
rax_free (Prec);
if (M) for (i = 0; i < M_depth; i++) rax_free (M[i]);
rax_free (M);
if (Mprime) for (i = 0; i < Mprime_depth; i++) rax_free (Mprime[i]);
rax_free (Mprime);
}
|