1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
Ray
Copyright (C) 2010, 2011, 2012 Sébastien Boisvert
http://DeNovoAssembler.SourceForge.Net/
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You have received a copy of the GNU General Public License
along with this program (gpl-3.0.txt).
see <http://www.gnu.org/licenses/>
*/
#include "OpenAssemblerChooser.h"
#include "Chooser.h"
void OpenAssemblerChooser::updateMultiplicators(){
m_singleEndMultiplicator=2.0;
m_pairedEndMultiplicator=2.0;
}
void OpenAssemblerChooser::constructor(){
updateMultiplicators();
}
int OpenAssemblerChooser::choose(ExtensionData*ed,Chooser*m_c,int minimumCoverage,
Parameters*parameters){
/** filter invalid choices */
set<int> invalidChoices;
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
int coverageForI=ed->m_EXTENSION_coverages.at(i);
Kmer key=ed->m_enumerateChoices_outgoingEdges[i];
/** an invalid choice must not have paired reads */
/** an invalid choice must not have single reads */
if(ed->m_EXTENSION_pairedReadPositionsForVertices[key].size()==0 && ed->m_EXTENSION_readPositionsForVertices[key].size()==0){
invalidChoices.insert(i);
continue;
}
/* invalid if < minCoverage and all others >= 2*minCoverage */
if(coverageForI<minimumCoverage){
bool invalid=true;
for(int j=0;j<(int)ed->m_enumerateChoices_outgoingEdges.size();j++){
if(i==j)
continue;
int coverageForJ=ed->m_EXTENSION_coverages.at(j);
if(coverageForJ<2*minimumCoverage){
invalid=false;
break;
}
}
if(invalid){
invalidChoices.insert(i);
continue;
}
}
/* invalid if < minCoverage/2 and all others >= minCoverage */
if(coverageForI<minimumCoverage/2){
bool invalid=true;
for(int j=0;j<(int)ed->m_enumerateChoices_outgoingEdges.size();j++){
if(i==j)
continue;
int coverageForJ=ed->m_EXTENSION_coverages.at(j);
if(coverageForJ<minimumCoverage){
invalid=false;
break;
}
}
if(invalid){
invalidChoices.insert(i);
continue;
}
}
/* invalid if == 2 and all other are >= 10 */
if(coverageForI == 2){
bool invalid=true;
for(int j=0;j<(int)ed->m_enumerateChoices_outgoingEdges.size();j++){
if(i==j)
continue;
int coverageForJ=ed->m_EXTENSION_coverages.at(j);
if(coverageForJ<10){
invalid=false;
break;
}
}
if(invalid){
invalidChoices.insert(i);
continue;
}
}
}
/** make a list of battle victories for each choice */
vector<set<int> > battleVictories;
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
set<int> victories;
battleVictories.push_back(victories);
}
chooseWithCoverage(ed,minimumCoverage,&battleVictories);
int coverageWinner=getWinner(&battleVictories,ed->m_enumerateChoices_outgoingEdges.size());
if(coverageWinner!=IMPOSSIBLE_CHOICE && invalidChoices.count(coverageWinner) == 0)
return coverageWinner;
int withPairedInformation=0;
/** prepare data for the NovaEngine */
vector<map<int,int> > novaData;
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
Kmer key=ed->m_enumerateChoices_outgoingEdges[i];
map<int,int> data;
/** load single-end data */
/*
if(ed->m_EXTENSION_readPositionsForVertices.count(key)>0){
for(vector<int>::iterator j=ed->m_EXTENSION_readPositionsForVertices[key].begin();
j!=ed->m_EXTENSION_readPositionsForVertices[key].end();j++){
int val=*j;
data[val]++;
}
}
*/
/** load paired-end data and mate-pair data */
if(ed->m_EXTENSION_pairedReadPositionsForVertices.count(key)>0){
for(int j=0;j<(int)ed->m_EXTENSION_pairedReadPositionsForVertices[key].size();j++){
if(j==0)
withPairedInformation++;
int value=ed->m_EXTENSION_pairedReadPositionsForVertices[key][j];
data[value]++;
}
}
novaData.push_back(data);
}
int novaChoice=IMPOSSIBLE_CHOICE;
/** this is the powerful NovaEngine -- an assembly engine to surf de Bruijn DNA graphs */
if(parameters->hasOption("-use-NovaEngine") && withPairedInformation>0){
/** NovaData are ready, now call the NovaEngine */
bool showNovaAlgorithm=parameters->hasOption("-show-NovaEngine");
novaChoice=m_novaEngine.choose(&novaData,&invalidChoices,showNovaAlgorithm);
if(novaChoice!=IMPOSSIBLE_CHOICE)
return novaChoice;
}
m_c->chooseWithPairedReads(ed,m_pairedEndMultiplicator,&battleVictories,parameters);
int pairedChoice=getWinner(&battleVictories,ed->m_enumerateChoices_outgoingEdges.size());
battleVictories.clear();
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
set<int> victories;
battleVictories.push_back(victories);
}
if(pairedChoice!=IMPOSSIBLE_CHOICE){
return pairedChoice;
}else{
/** TODO: verify it this really improves assemblies . */
if(ed->m_EXTENSION_extension.size()>50000){
if(!parameters->hasPairedReads()){
return IMPOSSIBLE_CHOICE;
}
}
// if both have paired reads and that is not enough for one of them to win, then abort
int withPairedReads=0;
for(int j=0;j<(int)ed->m_enumerateChoices_outgoingEdges.size();j++){
Kmer key=ed->m_enumerateChoices_outgoingEdges[j];
if(ed->m_EXTENSION_pairedReadPositionsForVertices[key].size()>0){
withPairedReads++;
}
}
if(withPairedReads!=0){
return IMPOSSIBLE_CHOICE;
}
}
map<int,int> CHOOSER_theMaxs;
map<int,int> CHOOSER_theNumbers;
map<int,int> CHOOSER_theSums;
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
Kmer key=ed->m_enumerateChoices_outgoingEdges[i];
int max=0;
int n=0;
int sum=0;
if(ed->m_EXTENSION_readPositionsForVertices.count(key)>0){
for(vector<int>::iterator j=ed->m_EXTENSION_readPositionsForVertices[key].begin();
j!=ed->m_EXTENSION_readPositionsForVertices[key].end();j++){
int val=*j;
if(val>max){
max=val;
}
n++;
sum+=val;
}
}
CHOOSER_theSums[i]=sum;
CHOOSER_theNumbers[i]=n;
CHOOSER_theMaxs[i]=max;
}
// win or lose with single-end reads
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
if(CHOOSER_theMaxs[i]<5){
continue;
}
for(int j=0;j<(int)ed->m_enumerateChoices_outgoingEdges.size();j++){
if((CHOOSER_theMaxs[i] > m_singleEndMultiplicator*CHOOSER_theMaxs[j])
&& (CHOOSER_theSums[i] > m_singleEndMultiplicator*CHOOSER_theSums[j])
&& (CHOOSER_theNumbers[i] > m_singleEndMultiplicator*CHOOSER_theNumbers[j])
){
battleVictories[i].insert(j);
}
}
}
int finalWinner=getWinner(&battleVictories,ed->m_enumerateChoices_outgoingEdges.size());
if(finalWinner!=IMPOSSIBLE_CHOICE){
return finalWinner;
}
return IMPOSSIBLE_CHOICE;
}
int OpenAssemblerChooser::getWinner(vector<set<int> >*battleVictories,int choices){
for(int winner=0;winner<(int)battleVictories->size();winner++){
int wins=battleVictories->at(winner).size();
if(wins+1==choices){
return winner;
}
}
return IMPOSSIBLE_CHOICE;
}
void OpenAssemblerChooser::chooseWithCoverage(ExtensionData*ed,int minCoverage,vector<set<int> >*battleVictories){
for(int i=0;i<(int)ed->m_enumerateChoices_outgoingEdges.size();i++){
int coverageForI=ed->m_EXTENSION_coverages.at(i);
Kmer key=ed->m_enumerateChoices_outgoingEdges[i];
for(int j=0;j<(int)ed->m_enumerateChoices_outgoingEdges.size();j++){
if(i==j){
continue;
}
int coverageForJ=ed->m_EXTENSION_coverages.at(j);
if(coverageForI>=2*minCoverage && coverageForJ<=minCoverage/2){
(*battleVictories)[i].insert(j);
}
if(coverageForI>=minCoverage && coverageForJ<=minCoverage/2){
(*battleVictories)[i].insert(j);
}
}
}
}
|