File: IndexerWorker.cpp

package info (click to toggle)
ray 2.3.1-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,008 kB
  • sloc: cpp: 49,973; sh: 339; makefile: 281; python: 168
file content (362 lines) | stat: -rw-r--r-- 10,255 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*
 	Ray
    Copyright (C) 2010, 2011, 2012 Sébastien Boisvert

	http://DeNovoAssembler.SourceForge.Net/

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, version 3 of the License.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You have received a copy of the GNU General Public License
    along with this program (gpl-3.0.txt).  
	see <http://www.gnu.org/licenses/>

*/

#include "IndexerWorker.h"

#include <RayPlatform/core/statistics.h>

#include <string.h>

void IndexerWorker::constructor(int sequenceId,Parameters*parameters,RingAllocator*outboxAllocator,
	VirtualCommunicator*vc,WorkerHandle workerId,ArrayOfReads*a,MyAllocator*allocator,
	ofstream*f,
	map<int,map<int,int> >*forwardStatistics,
	map<int,map<int,int> >*reverseStatistics,

	MessageTag RAY_MPI_TAG_ATTACH_SEQUENCE,
	MessageTag RAY_MPI_TAG_REQUEST_VERTEX_COVERAGE
){

	this->RAY_MPI_TAG_ATTACH_SEQUENCE=RAY_MPI_TAG_ATTACH_SEQUENCE;
	this->RAY_MPI_TAG_REQUEST_VERTEX_COVERAGE=RAY_MPI_TAG_REQUEST_VERTEX_COVERAGE;

	m_forwardStatistics=forwardStatistics;
	m_reverseStatistics=reverseStatistics;
	m_readMarkerFile=f;
	m_reads=a;
	m_allocator=allocator;
	m_sequenceId=sequenceId;
	m_parameters=parameters;
	m_outboxAllocator=outboxAllocator;
	m_virtualCommunicator=vc;
	m_workerId=workerId;
	m_done=false;
	m_forwardIndexed=false;
	m_reverseIndexed=false;
	m_position=0;
	m_coverageRequested=false;
	m_vertexIsDone=false;
	m_vertexInitiated=false;
	m_fetchedCoverageValues=false;
	m_coverages.constructor();
	m_vertices.constructor();
}

bool IndexerWorker::isDone(){
	return m_done;
}

void IndexerWorker::work(){
	Read*read=m_reads->at(m_workerId);

	#ifdef CONFIG_ASSERT
	assert(read!=NULL);
	#endif

	if(m_done){
		return;
	}else if(!m_fetchedCoverageValues){
		if(m_position>read->length() -m_parameters->getWordSize()){
			m_fetchedCoverageValues=true;
		}else if(!m_coverageRequested){
			Kmer vertex=read->getVertex(m_position,m_parameters->getWordSize(),'F',m_parameters->getColorSpaceMode());
			m_vertices.push_back(vertex,m_allocator);
			int sendTo=m_parameters->vertexRank(&vertex);
			MessageUnit*message=(MessageUnit*)m_outboxAllocator->allocate(1*sizeof(MessageUnit));
			int bufferPosition=0;
			vertex.pack(message,&bufferPosition);
			Message aMessage(message,bufferPosition,sendTo,RAY_MPI_TAG_REQUEST_VERTEX_COVERAGE,m_parameters->getRank());
			m_virtualCommunicator->pushMessage(m_workerId,&aMessage);
			m_coverageRequested=true;
		}else if(m_virtualCommunicator->isMessageProcessed(m_workerId)){
			vector<MessageUnit> response;
			m_virtualCommunicator->getMessageResponseElements(m_workerId,&response);
			int coverage=response[0];
			m_coverages.push_back(coverage,m_allocator);
			m_position++;
			m_coverageRequested=false;
		}
	}else if(!m_forwardIndexed){
		if(!m_vertexIsDone){

			// the position is selected with an algorithm
			int selectedPosition=-1;

#ifdef CONFIG_USE_COVERAGE_DISTRIBUTION
			// find a vertex that is not an error and that is not repeated
			for(int i=0;i<(int)m_coverages.size()/2;i++){
				int coverage=(m_coverages).at(i);
				if(coverage>=m_parameters->getMinimumCoverage()/2&&coverage<m_parameters->getPeakCoverage()*2){
					selectedPosition=i;
					break;
				}
			}

			// find a vertex that is not an error 
			if(selectedPosition==-1){
				for(int i=0;i<(int)m_coverages.size();i++){
					int coverage=(m_coverages).at(i);
					if(coverage>=m_parameters->getMinimumCoverage()/2){
						selectedPosition=i;
						break;
					}
				}
	
			}

#else
	// get the average
	// take the first above the average/2
	// gg

			vector<int> data;

			for(int i=0;i<(int)m_coverages.size();i++){
				int coverageValue=m_coverages.at(i);
				data.push_back(coverageValue);
			}

			int threshold=getThreshold(&data);

			for(int i=0;i<(int)m_coverages.size();i++){
				if(m_coverages.at(i)>=threshold){
					selectedPosition=i;
					break;
				}
			}

#endif

			// index it
			if(selectedPosition!=-1){
				Kmer vertex=(m_vertices).at(selectedPosition);
				int sendTo=m_parameters->vertexRank(&vertex);
				MessageUnit*message=(MessageUnit*)m_outboxAllocator->allocate(5*sizeof(MessageUnit));
				int j=0;
				vertex.pack(message,&j);
				message[j++]=m_parameters->getRank();
				message[j++]=m_sequenceId;
				message[j++]=selectedPosition;
				message[j++]='F';
				Message aMessage(message,j,sendTo,RAY_MPI_TAG_ATTACH_SEQUENCE,m_parameters->getRank());
				m_virtualCommunicator->pushMessage(m_workerId,&aMessage);
				m_vertexIsDone=true;
				m_reads->at(m_workerId)->setForwardOffset(selectedPosition);
			}else{
				m_forwardIndexed=true;
			}
		}else if(m_virtualCommunicator->isMessageProcessed(m_workerId)){
			vector<MessageUnit> response;
			m_virtualCommunicator->getMessageResponseElements(m_workerId,&response);
			m_forwardIndexed=true;
			m_reverseIndexed=false;
			m_vertexIsDone=false;
		}
	}else if(!m_reverseIndexed){
		if(!m_vertexIsDone){
			// the position is selected with an algorithm
			int selectedPosition=-1;

#ifdef CONFIG_USE_COVERAGE_DISTRIBUTION

			// find a vertex that is not an error and that is not repeated
			for(int i=(int)(m_coverages).size()-1;i>=(int)m_coverages.size()/2;i--){
				int coverage=(m_coverages).at(i);
				if(coverage>=m_parameters->getMinimumCoverage()/2&&coverage<m_parameters->getPeakCoverage()*2){
					selectedPosition=i;
					break;
				}
			}

			// find a vertex that is not an error 
			if(selectedPosition==-1){
				for(int i=(int)(m_coverages).size()-1;i>=0;i--){
					int coverage=(m_coverages).at(i);
					if(coverage>=m_parameters->getMinimumCoverage()/2){
						selectedPosition=i;
						break;
					}
				}
	
			}

#else
	// get the average
	// take the first above the average/2
	// gg

			vector<int> data;

			for(int i=0;i<(int)m_coverages.size();i++){
				int coverageValue=m_coverages.at(i);
				data.push_back(coverageValue);
			}

			int threshold=getThreshold(&data);

			for(int i=m_coverages.size()-1;i>=0;i--){
				if(m_coverages.at(i)>=threshold){
					selectedPosition=i;
					break;
				}
			}

#endif

			// index it
			if(selectedPosition!=-1){
				Kmer tmp=m_vertices.at(selectedPosition);
				Kmer vertex=m_parameters->_complementVertex(&tmp);
				int sendTo=m_parameters->vertexRank(&vertex);
				MessageUnit*message=(MessageUnit*)m_outboxAllocator->allocate(5*sizeof(MessageUnit));
				int positionOnStrand=read->length()-m_parameters->getWordSize()-selectedPosition;
				int j=0;
				vertex.pack(message,&j);
				message[j++]=m_parameters->getRank();
				message[j++]=m_sequenceId;
				message[j++]=positionOnStrand;
				message[j++]='R';
				Message aMessage(message,j,sendTo,RAY_MPI_TAG_ATTACH_SEQUENCE,m_parameters->getRank());
				m_virtualCommunicator->pushMessage(m_workerId,&aMessage);
				m_vertexIsDone=true;
				m_reads->at(m_workerId)->setReverseOffset(positionOnStrand);
			}else{
				m_reverseIndexed=true;
			}
		}else if(m_virtualCommunicator->isMessageProcessed(m_workerId)){
			vector<MessageUnit> response;
			m_virtualCommunicator->getMessageResponseElements(m_workerId,&response);
			m_reverseIndexed=true;
		}

	}else{
		if(m_parameters->hasOption("-write-read-markers")){
			#ifdef CONFIG_ASSERT
			assert(m_readMarkerFile != NULL);
			#endif

			// append read marker information to a file.
			(*m_readMarkerFile)<<m_sequenceId<<" Count: "<<m_coverages.size();

			#ifdef CONFIG_ASSERT
			assert(m_workerId < (int)m_reads->size());
			#endif

			(*m_readMarkerFile)<<" Selections:";
			(*m_readMarkerFile)<<" "<<m_reads->at(m_workerId)->getForwardOffset();
			(*m_readMarkerFile)<<" "<<m_reads->at(m_workerId)->getReverseOffset();

			(*m_readMarkerFile)<<" Values:";

			vector<int> data;

			for(int i=0;i<(int)m_coverages.size();i++){
				int coverageValue=m_coverages.at(i);
				(*m_readMarkerFile)<<" "<<i<<" "<<coverageValue;
				data.push_back(coverageValue);
			}

			(*m_readMarkerFile)<<" average: "<<getAverage(&data);

			(*m_readMarkerFile)<<endl;

		}

		if(m_parameters->hasOption("-write-marker-summary")){
			#ifdef CONFIG_ASSERT
			assert(m_workerId < (int)m_reads->size());
			#endif

			int forwardOffset = m_reads->at(m_workerId)->getForwardOffset();

			if(forwardOffset < m_coverages.size() && m_coverages.size() > 0){
				#ifdef CONFIG_ASSERT
				assert(m_coverages.size() > 0);
				#endif

				int forwardCoverage = m_coverages.at(forwardOffset);
				(*m_forwardStatistics)[forwardOffset][forwardCoverage] ++ ;
			}else{
				// invalid selection, probably because there are nothing to poke around
				(*m_forwardStatistics)[-1][-1] ++ ;
			}

			int reverseOffset = m_reads->at(m_workerId)->getReverseOffset();

			if(reverseOffset < m_coverages.size() && m_coverages.size() > 0){
				#ifdef CONFIG_ASSERT
				assert(m_coverages.size() > 0);
				#endif

				int reverseCoverage = m_coverages.at(m_coverages.size()- 1 - reverseOffset);
				(*m_reverseStatistics)[reverseOffset][reverseCoverage] ++ ;
			}else{
				// invalid selection, probably because there are nothing to poke around
				(*m_reverseStatistics)[-1][-1] ++ ;
			}
		}

		m_vertices.destructor(m_allocator);
		m_coverages.destructor(m_allocator);
		m_done=true;
	}
}

WorkerHandle IndexerWorker::getWorkerIdentifier(){
	return m_workerId;
}

// we want a (local) threshold that removes things that are errors
int IndexerWorker::getThreshold(vector<int>*data){
	// now, we know that repeats will add bias to the average...
	// so if the average is too large
	// we want to correct this
	
	int multiplicator=2;

	int bestScore=0;
	int bestEntry=-1;

	for(int value=10;value>=1;value--){
		int bin1=value;
		int bin2=value*multiplicator;
		
		int bin1Count=0;
		int bin2Count=0;

		for(int i=0;i<(int)data->size();i++){
			int point=data->at(i);
			if(point<=bin1)
				bin1Count++;
			if(point>=bin2)
				bin2Count++;
		}
		
		int score=bin1Count+bin2Count;

		if(bestEntry==-1 || score > bestScore){
			bestEntry=value;
			bestScore=score;
		}
	}

	return multiplicator*bestEntry;
}