1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
/*************************************************************************
* Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#include "CollectiveArgs.hpp"
#include "PrepDataFuncs.hpp"
#include <cstdio>
#include <hip/hip_runtime.h>
namespace RcclUnitTesting
{
ErrCode DefaultPrepareDataFunc(CollectiveArgs &collArgs)
{
switch (collArgs.funcType)
{
case ncclCollBroadcast: return DefaultPrepData_Broadcast(collArgs);
case ncclCollReduce: return DefaultPrepData_Reduce(collArgs, false);
case ncclCollAllGather: return DefaultPrepData_Gather(collArgs, true);
case ncclCollReduceScatter: return DefaultPrepData_ReduceScatter(collArgs);
case ncclCollAllReduce: return DefaultPrepData_Reduce(collArgs, true);
case ncclCollGather: return DefaultPrepData_Gather(collArgs, false);
case ncclCollScatter: return DefaultPrepData_Scatter(collArgs);
case ncclCollAllToAll: return DefaultPrepData_AllToAll(collArgs);
case ncclCollAllToAllv: return DefaultPrepData_AllToAllv(collArgs);
case ncclCollSend: return DefaultPrepData_Send(collArgs);
case ncclCollRecv: return DefaultPrepData_Recv(collArgs);
default:
ERROR("Unknown func type %d\n", collArgs.funcType);
return TEST_FAIL;
}
}
ErrCode CheckAllocation(CollectiveArgs const& collArgs)
{
if (collArgs.numInputElements > collArgs.numInputElementsAllocated)
{
ERROR("Number of input elements (%lu) exceeds the number of allocated input elements (%lu)\n",
collArgs.numInputElements, collArgs.numInputElementsAllocated);
return TEST_FAIL;
}
if (collArgs.numOutputElements > collArgs.numOutputElementsAllocated)
{
ERROR("Number of output elements (%lu) exceeds the number of allocated output elements (%lu)\n",
collArgs.numOutputElements, collArgs.numOutputElementsAllocated);
return TEST_FAIL;
}
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_Broadcast(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
if (collArgs.numInputElements != collArgs.numOutputElements)
{
ERROR("Number of input elements must match number of output elements for Broadcast\n");
return TEST_FAIL;
}
size_t const numBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
// Clear output for all ranks (done before filling input in case of in-place)
CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numBytes));
// Only root needs input pattern
if (collArgs.globalRank == collArgs.options.root)
CHECK_CALL(collArgs.inputGpu.FillPattern(collArgs.dataType,
collArgs.numInputElements,
collArgs.options.root, true));
// Otherwise all other ranks expected output is the same as input of root
return collArgs.expected.FillPattern(collArgs.dataType,
collArgs.numInputElements,
collArgs.options.root,
false);
}
ErrCode DefaultPrepData_Reduce(CollectiveArgs &collArgs, bool const isAllReduce)
{
CHECK_CALL(CheckAllocation(collArgs));
if (collArgs.numInputElements != collArgs.numOutputElements)
{
ERROR("Number of input elements must match number of output elements for Reduce\n");
return TEST_FAIL;
}
size_t const numBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
// Clear output for all ranks (done before filling input in case of in-place)
CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numBytes));
// Clear expected buffer for holding reduction
PtrUnion result;
CHECK_CALL(result.Attach(collArgs.expected));
CHECK_CALL(result.ClearCpuMem(numBytes));
// If average or custom reduction operator is used, perform a summation instead
ncclRedOp_t const tempOp = (collArgs.options.redOp >= ncclAvg ? ncclSum : collArgs.options.redOp);
// Loop over each rank and generate their input into a temp buffer, then reduce
PtrUnion scalarsPerRank;
scalarsPerRank.Attach(collArgs.options.scalarTransport.ptr);
PtrUnion tempInputCpu;
CHECK_CALL(tempInputCpu.Attach(collArgs.outputCpu));
for (int rank = 0; rank < collArgs.totalRanks; ++rank)
{
// Generate temporary input for this rank
CHECK_CALL(tempInputCpu.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false));
// Copy the pre-scaled input into GPU memory for the correct rank
if (rank == collArgs.globalRank)
{
CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInputCpu.ptr, numBytes, hipMemcpyHostToDevice));
}
// Scale the temporary input by local scalar for this rank
// (Used by custom reduction ops)
if (collArgs.options.scalarMode >= 0)
{
CHECK_CALL(tempInputCpu.Scale(collArgs.dataType, collArgs.numInputElements,
scalarsPerRank, rank));
}
// Any rank that requires output reduces the scaled-inputs
if (isAllReduce || collArgs.options.root == collArgs.globalRank)
{
if (rank == 0)
{
memcpy(result.ptr, tempInputCpu.ptr, numBytes);
}
else
{
CHECK_CALL(result.Reduce(collArgs.dataType, collArgs.numInputElements,
tempInputCpu, tempOp));
}
}
}
// Perform averaging if necessary
if (collArgs.options.redOp == ncclAvg && (isAllReduce || collArgs.options.root == collArgs.globalRank))
{
CHECK_CALL(result.DivideByInt(collArgs.dataType, collArgs.numInputElements, collArgs.totalRanks));
}
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_Gather(CollectiveArgs &collArgs, bool const isAllGather)
{
CHECK_CALL(CheckAllocation(collArgs));
if (collArgs.totalRanks * collArgs.numInputElements != collArgs.numOutputElements)
{
ERROR("# of output elements must be total ranks * # input elements for AllGather\n");
return TEST_FAIL;
}
// Clear output for all ranks (done before filling input in case of in-place)
size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
CHECK_CALL(collArgs.inputGpu.ClearGpuMem(numInputBytes));
CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numOutputBytes));
PtrUnion result;
CHECK_CALL(result.Attach(collArgs.expected.ptr));
CHECK_CALL(result.ClearCpuMem(numOutputBytes));
// Use outputCpu buffer to store temporary input
PtrUnion tempInputCpu;
CHECK_CALL(tempInputCpu.Attach(collArgs.outputCpu.ptr));
for (int rank = 0; rank < collArgs.totalRanks; ++rank)
{
CHECK_CALL(tempInputCpu.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false));
if (rank == collArgs.globalRank)
{
CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInputCpu.ptr, numInputBytes, hipMemcpyHostToDevice));
}
if (isAllGather || collArgs.options.root == collArgs.globalRank)
{
memcpy(result.I1 + (rank * numInputBytes), tempInputCpu.ptr, numInputBytes);
}
}
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_ReduceScatter(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
if (collArgs.numInputElements != collArgs.numOutputElements * collArgs.totalRanks)
{
ERROR("# of input elements must be total ranks * # output elements for ReduceScatter\n");
return TEST_FAIL;
}
size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
// Clear output for all ranks (done before filling input in case of in-place)
CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numOutputBytes));
PtrUnion tempInputCpu;
PtrUnion tempResultCpu;
CHECK_CALL(tempInputCpu.AllocateCpuMem(numInputBytes));
CHECK_CALL(tempResultCpu.AllocateCpuMem(numInputBytes));
CHECK_CALL(tempResultCpu.ClearCpuMem(numInputBytes));
// If average or custom reduction operator is used, perform a summation instead
ncclRedOp_t const tempOp = (collArgs.options.redOp >= ncclAvg ? ncclSum : collArgs.options.redOp);
// Loop over each rank and generate the input / scale / reduce
PtrUnion scalarsPerRank;
scalarsPerRank.Attach(collArgs.options.scalarTransport.ptr);
for (int rank = 0; rank < collArgs.totalRanks; ++rank)
{
CHECK_CALL(tempInputCpu.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false));
if (rank == collArgs.globalRank)
{
if (hipMemcpy(collArgs.inputGpu.ptr, tempInputCpu.ptr, numInputBytes, hipMemcpyHostToDevice) != hipSuccess)
{
ERROR("hipMemcpy to input failed\n");
CHECK_CALL(tempInputCpu.FreeCpuMem());
CHECK_CALL(tempResultCpu.FreeCpuMem());
return TEST_FAIL;
}
}
// Scale the temporary input by local scalar for this rank
// (Used by custom reduction ops)
if (collArgs.options.scalarMode >= 0)
{
CHECK_CALL(tempInputCpu.Scale(collArgs.dataType, collArgs.numInputElements,
scalarsPerRank, rank));
}
if (rank == 0)
{
memcpy(tempResultCpu.ptr, tempInputCpu.ptr, numInputBytes);
}
else
{
CHECK_CALL(tempResultCpu.Reduce(collArgs.dataType, collArgs.numInputElements,
tempInputCpu, tempOp));
}
}
// Perform averaging if necessary
if (collArgs.options.redOp == ncclAvg)
{
CHECK_CALL(tempResultCpu.DivideByInt(collArgs.dataType, collArgs.numInputElements, collArgs.totalRanks));
}
// Copy over portion of result
memcpy(collArgs.expected.I1,
tempResultCpu.I1 + collArgs.globalRank * numOutputBytes,
numOutputBytes);
CHECK_CALL(tempInputCpu.FreeCpuMem());
CHECK_CALL(tempResultCpu.FreeCpuMem());
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_Scatter(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
if (collArgs.numInputElements != collArgs.numOutputElements * collArgs.totalRanks)
{
ERROR("# of input elements must be total ranks * # output elements for Scatter\n");
return TEST_FAIL;
}
size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
// Clear outputs on all ranks (prior to input in case of in-place)
collArgs.outputGpu.ClearGpuMem(numOutputBytes);
// Generate input as if on root rank - each rank will receive a portion
PtrUnion tempInput;
tempInput.AllocateCpuMem(numInputBytes);
tempInput.FillPattern(collArgs.dataType, collArgs.numInputElements, collArgs.options.root, false);
// Copy input to root rank
if (collArgs.globalRank == collArgs.options.root)
{
if (hipMemcpy(collArgs.inputGpu.ptr, tempInput.ptr, numInputBytes, hipMemcpyHostToDevice) != hipSuccess)
{
ERROR("hipMemcpy to input failed\n");
tempInput.FreeCpuMem();
return TEST_FAIL;
}
}
else
{
collArgs.inputGpu.ClearGpuMem(numInputBytes);
}
// Each rank receive a portion of the input
memcpy(collArgs.expected.U1, tempInput.U1 + (collArgs.globalRank * numOutputBytes), numOutputBytes);
tempInput.FreeCpuMem();
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_AllToAll(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
if (collArgs.numInputElements != collArgs.numOutputElements)
{
ERROR("Number of input elements must match number of output elements for AllToAll\n");
return TEST_FAIL;
}
if (collArgs.numInputElements % collArgs.totalRanks)
{
ERROR("Input / Output size for AllToAll must be a multiple of %d\n", collArgs.totalRanks);
return TEST_FAIL;
}
size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
size_t const numBytes = numInputBytes / collArgs.totalRanks;
// Clear outputs on all ranks (prior to input in case of in-place)
collArgs.outputGpu.ClearGpuMem(numOutputBytes);
// Generate input on root rank - each rank will receive a portion
PtrUnion tempInput;
tempInput.Attach(collArgs.outputCpu);
for (int rank = 0; rank < collArgs.totalRanks; ++rank)
{
tempInput.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false);
// Copy input
if (rank == collArgs.globalRank)
{
CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInput.ptr, numInputBytes, hipMemcpyHostToDevice));
}
memcpy(collArgs.expected.U1 + (numBytes * rank), tempInput.U1 + (numBytes * collArgs.globalRank), numBytes);
}
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_AllToAllv(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
// calculating maxNumElements as the maximum number of input bytes out of all the ranks
size_t maxNumElements = 0;
for (int sendRank = 0; sendRank < collArgs.totalRanks; ++sendRank)
for (int recvRank = 0; recvRank < collArgs.totalRanks; ++recvRank)
{
size_t rankSendCount = collArgs.options.sdispls[(sendRank)*collArgs.totalRanks+recvRank] + collArgs.options.sendcounts[(sendRank)*collArgs.totalRanks+recvRank];
maxNumElements = std::max(maxNumElements, rankSendCount);
}
// Clear outputs on all ranks (prior to input in case of in-place)
collArgs.outputGpu.ClearGpuMem(numOutputBytes);
// Generate input on root rank - each rank will receive a portion
PtrUnion tempInput;
tempInput.AllocateCpuMem(maxNumElements*DataTypeToBytes(collArgs.dataType));
for (int sendRank = 0; sendRank < collArgs.totalRanks; ++sendRank)
{
tempInput.FillPattern(collArgs.dataType, maxNumElements, sendRank, false);
size_t recvDspls = collArgs.options.rdispls[collArgs.globalRank*collArgs.totalRanks + sendRank] * DataTypeToBytes(collArgs.dataType);
size_t sendDspls = collArgs.options.sdispls[sendRank*collArgs.totalRanks + collArgs.globalRank] * DataTypeToBytes(collArgs.dataType);
size_t numBytes = collArgs.options.recvcounts[collArgs.globalRank*collArgs.totalRanks + sendRank] * DataTypeToBytes(collArgs.dataType);
memcpy(collArgs.expected.U1 + recvDspls, tempInput.U1 + sendDspls, numBytes);
}
tempInput.FillPattern(collArgs.dataType, collArgs.numInputElements, collArgs.globalRank, false);
CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInput.ptr, numInputBytes, hipMemcpyHostToDevice));
tempInput.FreeCpuMem();
return TEST_SUCCESS;
}
ErrCode DefaultPrepData_Send(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
return collArgs.inputGpu.FillPattern(collArgs.dataType,
collArgs.numInputElements,
collArgs.globalRank, true);
}
ErrCode DefaultPrepData_Recv(CollectiveArgs &collArgs)
{
CHECK_CALL(CheckAllocation(collArgs));
return collArgs.expected.FillPattern(collArgs.dataType,
collArgs.numOutputElements,
collArgs.options.root,
false);
}
}
|