File: PrepDataFuncs.cpp

package info (click to toggle)
rccl 5.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,332 kB
  • sloc: cpp: 33,357; ansic: 6,717; xml: 5,265; makefile: 508; sh: 365; awk: 243; python: 85
file content (400 lines) | stat: -rw-r--r-- 16,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*************************************************************************
 * Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * See LICENSE.txt for license information
 ************************************************************************/

#include "CollectiveArgs.hpp"
#include "PrepDataFuncs.hpp"
#include <cstdio>
#include <hip/hip_runtime.h>

namespace RcclUnitTesting
{
  ErrCode DefaultPrepareDataFunc(CollectiveArgs &collArgs)
  {
    switch (collArgs.funcType)
    {
    case ncclCollBroadcast:     return DefaultPrepData_Broadcast(collArgs);
    case ncclCollReduce:        return DefaultPrepData_Reduce(collArgs, false);
    case ncclCollAllGather:     return DefaultPrepData_Gather(collArgs, true);
    case ncclCollReduceScatter: return DefaultPrepData_ReduceScatter(collArgs);
    case ncclCollAllReduce:     return DefaultPrepData_Reduce(collArgs, true);
    case ncclCollGather:        return DefaultPrepData_Gather(collArgs, false);
    case ncclCollScatter:       return DefaultPrepData_Scatter(collArgs);
    case ncclCollAllToAll:      return DefaultPrepData_AllToAll(collArgs);
    case ncclCollAllToAllv:     return DefaultPrepData_AllToAllv(collArgs);
    case ncclCollSend:          return DefaultPrepData_Send(collArgs);
    case ncclCollRecv:          return DefaultPrepData_Recv(collArgs);
    default:
      ERROR("Unknown func type %d\n", collArgs.funcType);
      return TEST_FAIL;
    }
  }

  ErrCode CheckAllocation(CollectiveArgs const& collArgs)
  {
    if (collArgs.numInputElements > collArgs.numInputElementsAllocated)
    {
      ERROR("Number of input elements (%lu) exceeds the number of allocated input elements (%lu)\n",
            collArgs.numInputElements, collArgs.numInputElementsAllocated);
      return TEST_FAIL;
    }

    if (collArgs.numOutputElements > collArgs.numOutputElementsAllocated)
    {
      ERROR("Number of output elements (%lu) exceeds the number of allocated output elements (%lu)\n",
            collArgs.numOutputElements, collArgs.numOutputElementsAllocated);
      return TEST_FAIL;
    }
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_Broadcast(CollectiveArgs &collArgs)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    if (collArgs.numInputElements != collArgs.numOutputElements)
    {
      ERROR("Number of input elements must match number of output elements for Broadcast\n");
      return TEST_FAIL;
    }

    size_t const numBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);

    // Clear output for all ranks (done before filling input in case of in-place)
    CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numBytes));

    // Only root needs input pattern
    if (collArgs.globalRank == collArgs.options.root)
      CHECK_CALL(collArgs.inputGpu.FillPattern(collArgs.dataType,
                                               collArgs.numInputElements,
                                               collArgs.options.root, true));

    // Otherwise all other ranks expected output is the same as input of root
    return collArgs.expected.FillPattern(collArgs.dataType,
                                         collArgs.numInputElements,
                                         collArgs.options.root,
                                         false);
  }

  ErrCode DefaultPrepData_Reduce(CollectiveArgs &collArgs, bool const isAllReduce)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    if (collArgs.numInputElements != collArgs.numOutputElements)
    {
      ERROR("Number of input elements must match number of output elements for Reduce\n");
      return TEST_FAIL;
    }

    size_t const numBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);

    // Clear output for all ranks (done before filling input in case of in-place)
    CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numBytes));

    // Clear expected buffer for holding reduction
    PtrUnion result;
    CHECK_CALL(result.Attach(collArgs.expected));
    CHECK_CALL(result.ClearCpuMem(numBytes));

    // If average or custom reduction operator is used, perform a summation instead
    ncclRedOp_t const tempOp = (collArgs.options.redOp >= ncclAvg ? ncclSum : collArgs.options.redOp);

    // Loop over each rank and generate their input into a temp buffer, then reduce
    PtrUnion scalarsPerRank;
    scalarsPerRank.Attach(collArgs.options.scalarTransport.ptr);

    PtrUnion tempInputCpu;
    CHECK_CALL(tempInputCpu.Attach(collArgs.outputCpu));
    for (int rank = 0; rank < collArgs.totalRanks; ++rank)
    {
      // Generate temporary input for this rank
      CHECK_CALL(tempInputCpu.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false));

      // Copy the pre-scaled input into GPU memory for the correct rank
      if (rank == collArgs.globalRank)
      {
        CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInputCpu.ptr, numBytes, hipMemcpyHostToDevice));
      }

      // Scale the temporary input by local scalar for this rank
      // (Used by custom reduction ops)
      if (collArgs.options.scalarMode >= 0)
      {
        CHECK_CALL(tempInputCpu.Scale(collArgs.dataType, collArgs.numInputElements,
                                      scalarsPerRank, rank));
      }

      // Any rank that requires output reduces the scaled-inputs
      if (isAllReduce || collArgs.options.root == collArgs.globalRank)
      {
        if (rank == 0)
        {
          memcpy(result.ptr, tempInputCpu.ptr, numBytes);
        }
        else
        {
          CHECK_CALL(result.Reduce(collArgs.dataType, collArgs.numInputElements,
                                   tempInputCpu, tempOp));
        }
      }
    }

    // Perform averaging if necessary
    if (collArgs.options.redOp == ncclAvg && (isAllReduce || collArgs.options.root == collArgs.globalRank))
    {
      CHECK_CALL(result.DivideByInt(collArgs.dataType, collArgs.numInputElements, collArgs.totalRanks));
    }
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_Gather(CollectiveArgs &collArgs, bool const isAllGather)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    if (collArgs.totalRanks * collArgs.numInputElements != collArgs.numOutputElements)
    {
      ERROR("# of output elements must be total ranks * # input elements for AllGather\n");
      return TEST_FAIL;
    }

    // Clear output for all ranks (done before filling input in case of in-place)
    size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
    size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
    CHECK_CALL(collArgs.inputGpu.ClearGpuMem(numInputBytes));
    CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numOutputBytes));

    PtrUnion result;
    CHECK_CALL(result.Attach(collArgs.expected.ptr));
    CHECK_CALL(result.ClearCpuMem(numOutputBytes));

    // Use outputCpu buffer to store temporary input
    PtrUnion tempInputCpu;
    CHECK_CALL(tempInputCpu.Attach(collArgs.outputCpu.ptr));

    for (int rank = 0; rank < collArgs.totalRanks; ++rank)
    {
      CHECK_CALL(tempInputCpu.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false));
      if (rank == collArgs.globalRank)
      {
        CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInputCpu.ptr, numInputBytes, hipMemcpyHostToDevice));
      }
      if (isAllGather || collArgs.options.root == collArgs.globalRank)
      {
        memcpy(result.I1 + (rank * numInputBytes), tempInputCpu.ptr, numInputBytes);
      }
    }
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_ReduceScatter(CollectiveArgs &collArgs)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    if (collArgs.numInputElements != collArgs.numOutputElements * collArgs.totalRanks)
    {
      ERROR("# of input elements must be total ranks * # output elements for ReduceScatter\n");
      return TEST_FAIL;
    }

    size_t const numInputBytes  = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
    size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);

    // Clear output for all ranks (done before filling input in case of in-place)
    CHECK_CALL(collArgs.outputGpu.ClearGpuMem(numOutputBytes));

    PtrUnion tempInputCpu;
    PtrUnion tempResultCpu;

    CHECK_CALL(tempInputCpu.AllocateCpuMem(numInputBytes));
    CHECK_CALL(tempResultCpu.AllocateCpuMem(numInputBytes));
    CHECK_CALL(tempResultCpu.ClearCpuMem(numInputBytes));

    // If average or custom reduction operator is used, perform a summation instead
    ncclRedOp_t const tempOp = (collArgs.options.redOp >= ncclAvg ? ncclSum : collArgs.options.redOp);

    // Loop over each rank and generate the input / scale / reduce
    PtrUnion scalarsPerRank;
    scalarsPerRank.Attach(collArgs.options.scalarTransport.ptr);
    for (int rank = 0; rank < collArgs.totalRanks; ++rank)
    {
      CHECK_CALL(tempInputCpu.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false));

      if (rank == collArgs.globalRank)
      {
        if (hipMemcpy(collArgs.inputGpu.ptr, tempInputCpu.ptr, numInputBytes, hipMemcpyHostToDevice) != hipSuccess)
        {
          ERROR("hipMemcpy to input failed\n");
          CHECK_CALL(tempInputCpu.FreeCpuMem());
          CHECK_CALL(tempResultCpu.FreeCpuMem());
          return TEST_FAIL;
        }
      }

      // Scale the temporary input by local scalar for this rank
      // (Used by custom reduction ops)
      if (collArgs.options.scalarMode >= 0)
      {
        CHECK_CALL(tempInputCpu.Scale(collArgs.dataType, collArgs.numInputElements,
                                      scalarsPerRank, rank));
      }

      if (rank == 0)
      {
        memcpy(tempResultCpu.ptr, tempInputCpu.ptr, numInputBytes);
      }
      else
      {
        CHECK_CALL(tempResultCpu.Reduce(collArgs.dataType, collArgs.numInputElements,
                                        tempInputCpu, tempOp));
      }
    }

    // Perform averaging if necessary
    if (collArgs.options.redOp == ncclAvg)
    {
      CHECK_CALL(tempResultCpu.DivideByInt(collArgs.dataType, collArgs.numInputElements, collArgs.totalRanks));
    }

    // Copy over portion of result
    memcpy(collArgs.expected.I1,
           tempResultCpu.I1 + collArgs.globalRank * numOutputBytes,
           numOutputBytes);
    CHECK_CALL(tempInputCpu.FreeCpuMem());
    CHECK_CALL(tempResultCpu.FreeCpuMem());
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_Scatter(CollectiveArgs &collArgs)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    if (collArgs.numInputElements != collArgs.numOutputElements * collArgs.totalRanks)
    {
      ERROR("# of input elements must be total ranks * # output elements for Scatter\n");
      return TEST_FAIL;
    }

    size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
    size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);

    // Clear outputs on all ranks (prior to input in case of in-place)
    collArgs.outputGpu.ClearGpuMem(numOutputBytes);

    // Generate input as if on root rank - each rank will receive a portion
    PtrUnion tempInput;
    tempInput.AllocateCpuMem(numInputBytes);
    tempInput.FillPattern(collArgs.dataType, collArgs.numInputElements, collArgs.options.root, false);

    // Copy input to root rank
    if (collArgs.globalRank == collArgs.options.root)
    {
      if (hipMemcpy(collArgs.inputGpu.ptr, tempInput.ptr, numInputBytes, hipMemcpyHostToDevice) != hipSuccess)
      {
        ERROR("hipMemcpy to input failed\n");
        tempInput.FreeCpuMem();
        return TEST_FAIL;
      }
    }
    else
    {
      collArgs.inputGpu.ClearGpuMem(numInputBytes);
    }

    // Each rank receive a portion of the input
    memcpy(collArgs.expected.U1, tempInput.U1 + (collArgs.globalRank * numOutputBytes), numOutputBytes);

    tempInput.FreeCpuMem();
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_AllToAll(CollectiveArgs &collArgs)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    if (collArgs.numInputElements != collArgs.numOutputElements)
    {
      ERROR("Number of input elements must match number of output elements for AllToAll\n");
      return TEST_FAIL;
    }
    if (collArgs.numInputElements % collArgs.totalRanks)
    {
      ERROR("Input / Output size for AllToAll must be a multiple of %d\n", collArgs.totalRanks);
      return TEST_FAIL;
    }
    size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
    size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);
    size_t const numBytes = numInputBytes / collArgs.totalRanks;

    // Clear outputs on all ranks (prior to input in case of in-place)
    collArgs.outputGpu.ClearGpuMem(numOutputBytes);

    // Generate input on root rank - each rank will receive a portion
    PtrUnion tempInput;
    tempInput.Attach(collArgs.outputCpu);

    for (int rank = 0; rank < collArgs.totalRanks; ++rank)
    {
      tempInput.FillPattern(collArgs.dataType, collArgs.numInputElements, rank, false);

      // Copy input
      if (rank == collArgs.globalRank)
      {
        CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInput.ptr, numInputBytes, hipMemcpyHostToDevice));
      }
      memcpy(collArgs.expected.U1 + (numBytes * rank), tempInput.U1 + (numBytes * collArgs.globalRank), numBytes);
    }
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_AllToAllv(CollectiveArgs &collArgs)
  {

    CHECK_CALL(CheckAllocation(collArgs));
    size_t const numInputBytes = collArgs.numInputElements * DataTypeToBytes(collArgs.dataType);
    size_t const numOutputBytes = collArgs.numOutputElements * DataTypeToBytes(collArgs.dataType);

    // calculating maxNumElements  as the maximum number of input bytes out of all the ranks
    size_t maxNumElements  = 0;
    for (int sendRank = 0; sendRank < collArgs.totalRanks; ++sendRank)
    for (int recvRank = 0; recvRank < collArgs.totalRanks; ++recvRank)
    {
      size_t rankSendCount = collArgs.options.sdispls[(sendRank)*collArgs.totalRanks+recvRank] + collArgs.options.sendcounts[(sendRank)*collArgs.totalRanks+recvRank];
      maxNumElements = std::max(maxNumElements, rankSendCount);
    }

    // Clear outputs on all ranks (prior to input in case of in-place)
    collArgs.outputGpu.ClearGpuMem(numOutputBytes);

    // Generate input on root rank - each rank will receive a portion
    PtrUnion tempInput;
    tempInput.AllocateCpuMem(maxNumElements*DataTypeToBytes(collArgs.dataType));

    for (int sendRank = 0; sendRank < collArgs.totalRanks; ++sendRank)
    {
      tempInput.FillPattern(collArgs.dataType, maxNumElements, sendRank, false);
      size_t recvDspls = collArgs.options.rdispls[collArgs.globalRank*collArgs.totalRanks + sendRank] * DataTypeToBytes(collArgs.dataType);
      size_t sendDspls = collArgs.options.sdispls[sendRank*collArgs.totalRanks + collArgs.globalRank] * DataTypeToBytes(collArgs.dataType);
      size_t numBytes = collArgs.options.recvcounts[collArgs.globalRank*collArgs.totalRanks + sendRank] * DataTypeToBytes(collArgs.dataType);
      memcpy(collArgs.expected.U1 + recvDspls, tempInput.U1 + sendDspls, numBytes);
    }
    tempInput.FillPattern(collArgs.dataType, collArgs.numInputElements, collArgs.globalRank, false);

    CHECK_HIP(hipMemcpy(collArgs.inputGpu.ptr, tempInput.ptr, numInputBytes, hipMemcpyHostToDevice));

    tempInput.FreeCpuMem();
    return TEST_SUCCESS;
  }

  ErrCode DefaultPrepData_Send(CollectiveArgs &collArgs)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    return collArgs.inputGpu.FillPattern(collArgs.dataType,
                                               collArgs.numInputElements,
                                               collArgs.globalRank, true);
  }

  ErrCode DefaultPrepData_Recv(CollectiveArgs &collArgs)
  {
    CHECK_CALL(CheckAllocation(collArgs));
    return collArgs.expected.FillPattern(collArgs.dataType,
                                         collArgs.numOutputElements,
                                         collArgs.options.root,
                                         false);
  }
}