1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
/*************************************************************************
* Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#include "PtrUnion.hpp"
namespace RcclUnitTesting
{
size_t DataTypeToBytes(ncclDataType_t const dataType)
{
switch (dataType)
{
case ncclInt8: return 1;
case ncclUint8: return 1;
case ncclInt32: return 4;
case ncclUint32: return 4;
case ncclInt64: return 8;
case ncclUint64: return 8;
case ncclFloat16: return 2;
case ncclFloat32: return 4;
case ncclFloat64: return 8;
case ncclBfloat16: return 2;
default:
ERROR("Unsupported datatype (%d)\n", dataType);
exit(0);
}
}
ErrCode PtrUnion::Attach(void *ptr)
{
this->ptr = ptr;
return TEST_SUCCESS;
}
ErrCode PtrUnion::Attach(PtrUnion ptrUnion)
{
this->ptr = ptrUnion.ptr;
return TEST_SUCCESS;
}
ErrCode PtrUnion::AllocateGpuMem(size_t const numBytes, bool const useManagedMem)
{
if (numBytes)
{
if (useManagedMem)
{
if (hipMallocManaged(&I1, numBytes) != hipSuccess)
{
ERROR("Unable to allocate managed memory of GPU memory (%lu bytes)\n", numBytes);
return TEST_FAIL;
}
}
else
{
if (hipMalloc(&I1, numBytes) != hipSuccess)
{
ERROR("Unable to allocate memory of GPU memory (%lu bytes)\n", numBytes);
return TEST_FAIL;
}
}
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::AllocateCpuMem(size_t const numBytes)
{
if (numBytes)
{
this->ptr = calloc(numBytes, 1);
if (!ptr)
{
ERROR("Unable to allocate memory (%lu bytes)\n", numBytes);
return TEST_FAIL;
}
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::FreeGpuMem()
{
if (this->ptr != nullptr)
{
hipFree(this->ptr);
this->ptr = nullptr;
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::FreeCpuMem()
{
if (this->ptr != nullptr)
{
free(this->ptr);
this->ptr = nullptr;
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::ClearGpuMem(size_t const numBytes)
{
if (hipMemset(this->ptr, 0, numBytes) != hipSuccess)
{
ERROR("Unable to call hipMemset\n");
return TEST_FAIL;
}
hipStreamSynchronize(NULL);
return TEST_SUCCESS;
}
ErrCode PtrUnion::ClearCpuMem(size_t const numBytes)
{
memset(this->ptr, 0, numBytes);
return TEST_SUCCESS;
}
ErrCode PtrUnion::FillPattern(ncclDataType_t const dataType,
size_t const numElements,
int const globalRank,
bool const isGpuMem)
{
PtrUnion temp;
size_t const numBytes = numElements * DataTypeToBytes(dataType);
// If this is GPU memory, create a CPU temp buffer otherwise fill CPU memory directly
if (isGpuMem)
temp.AllocateCpuMem(numBytes);
else
temp.Attach(this->ptr);
for (int i = 0; i < numElements; i++)
{
int valueI = (globalRank + i) % 256;
double valueF = 1.0L/((double)valueI+1.0L);
temp.Set(dataType, i, valueI, valueF);
}
// If this is GPU memory, copy from CPU temp buffer
if (isGpuMem)
{
if (hipMemcpy(this->ptr, temp.ptr, numBytes, hipMemcpyHostToDevice) != hipSuccess)
{
ERROR("Unable to fill input with pattern for rank %d\n", globalRank);
return TEST_FAIL;
}
temp.FreeCpuMem();
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::Set(ncclDataType_t const dataType, int const idx, int valueI, double valueF)
{
switch (dataType)
{
case ncclInt8: I1[idx] = valueI; break;
case ncclUint8: U1[idx] = valueI; break;
case ncclInt32: I4[idx] = valueI; break;
case ncclUint32: U4[idx] = valueI; break;
case ncclInt64: I8[idx] = valueI; break;
case ncclUint64: U8[idx] = valueI; break;
case ncclFloat16: F2[idx] = __float2half(static_cast<float>(valueF)); break;
case ncclFloat32: F4[idx] = valueF; break;
case ncclFloat64: F8[idx] = valueF; break;
case ncclBfloat16: B2[idx] = rccl_bfloat16(static_cast<float>(valueF)); break;
default:
ERROR("Unsupported datatype\n");
return TEST_FAIL;
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::Get(ncclDataType_t const dataType, int const idx, int& valueI, double& valueF) const
{
switch (dataType)
{
case ncclInt8: valueI = I1[idx]; break;
case ncclUint8: valueI = I1[idx]; break;
case ncclInt32: valueI = I4[idx]; break;
case ncclUint32: valueI = U4[idx]; break;
case ncclInt64: valueI = I8[idx]; break;
case ncclUint64: valueI = U8[idx]; break;
case ncclFloat16: valueF = __half2float(F2[idx]); break;
case ncclFloat32: valueF = F4[idx]; break;
case ncclFloat64: valueF = F8[idx]; break;
case ncclBfloat16: valueF = B2[idx]; break;
default:
ERROR("Unsupported datatype\n");
return TEST_FAIL;
}
return TEST_SUCCESS;
}
// Multiplies in-place each element by scalarsPerRank[rank]
ErrCode PtrUnion::Scale(ncclDataType_t const dataType,
size_t const numElements,
PtrUnion const& scalarsPerRank,
int const rank)
{
// If no scalars are provided do nothing
if (scalarsPerRank.ptr == nullptr) return TEST_SUCCESS;
for (size_t idx = 0; idx < numElements; ++idx)
{
switch (dataType)
{
case ncclInt8: I1[idx] *= scalarsPerRank.I1[rank]; break;
case ncclUint8: U1[idx] *= scalarsPerRank.U1[rank]; break;
case ncclInt32: I4[idx] *= scalarsPerRank.I4[rank]; break;
case ncclUint32: U4[idx] *= scalarsPerRank.U4[rank]; break;
case ncclInt64: I8[idx] *= scalarsPerRank.I8[rank]; break;
case ncclUint64: U8[idx] *= scalarsPerRank.U8[rank]; break;
case ncclFloat16: F2[idx] = __float2half(__half2float(F2[idx]) * __half2float(scalarsPerRank.F2[rank])); break;
case ncclFloat32: F4[idx] *= scalarsPerRank.F4[rank]; break;
case ncclFloat64: F8[idx] *= scalarsPerRank.F8[rank]; break;
case ncclBfloat16: B2[idx] *= scalarsPerRank.B2[rank]; break;
default:
ERROR("Unsupported datatype\n");
return TEST_FAIL;
}
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::Reduce(ncclDataType_t const dataType,
size_t const numElements,
PtrUnion const& inputCpu,
ncclRedOp_t const op)
{
if (inputCpu.ptr == nullptr)
{
ERROR("Input pointer to Reduce should not be nullptr\n");
return TEST_FAIL;
}
for (size_t idx = 0; idx < numElements; ++idx)
{
switch (dataType)
{
case ncclInt8: I1[idx] = ReduceOp(op, I1[idx], inputCpu.I1[idx]); break;
case ncclUint8: U1[idx] = ReduceOp(op, U1[idx], inputCpu.U1[idx]); break;
case ncclInt32: I4[idx] = ReduceOp(op, I4[idx], inputCpu.I4[idx]); break;
case ncclUint32: U4[idx] = ReduceOp(op, U4[idx], inputCpu.U4[idx]); break;
case ncclInt64: I8[idx] = ReduceOp(op, I8[idx], inputCpu.I8[idx]); break;
case ncclUint64: U8[idx] = ReduceOp(op, U8[idx], inputCpu.U8[idx]); break;
case ncclFloat16: F2[idx] = __float2half(ReduceOp(op, __half2float(F2[idx]), __half2float(inputCpu.F2[idx]))); break;
case ncclFloat32: F4[idx] = ReduceOp(op, F4[idx], inputCpu.F4[idx]); break;
case ncclFloat64: F8[idx] = ReduceOp(op, F8[idx], inputCpu.F8[idx]); break;
case ncclBfloat16: B2[idx] = ReduceOp(op, B2[idx], inputCpu.B2[idx]); break;
default:
ERROR("Unsupported datatype\n");
return TEST_FAIL;
}
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::DivideByInt(ncclDataType_t const dataType,
size_t const numElements,
int const divisor)
{
for (size_t idx = 0; idx < numElements; ++idx)
{
switch (dataType)
{
case ncclInt8: I1[idx] /= divisor; break;
case ncclUint8: U1[idx] /= divisor; break;
case ncclInt32: I4[idx] /= divisor; break;
case ncclUint32: U4[idx] /= divisor; break;
case ncclInt64: I8[idx] /= divisor; break;
case ncclUint64: U8[idx] /= divisor; break;
case ncclFloat16: F2[idx] = __float2half(__half2float(F2[idx])/divisor); break;
case ncclFloat32: F4[idx] /= divisor; break;
case ncclFloat64: F8[idx] /= divisor; break;
case ncclBfloat16: B2[idx] = (rccl_bfloat16((float)(B2[idx]) / divisor)); break;
default:
ERROR("Unsupported datatype\n");
return TEST_FAIL;
}
}
return TEST_SUCCESS;
}
ErrCode PtrUnion::IsEqual(ncclDataType_t const dataType,
size_t const numElements,
PtrUnion const& expected,
bool const verbose,
bool& isMatch)
{
isMatch = true;
size_t idx = 0;
for (idx = 0; idx < numElements; ++idx)
{
switch (dataType)
{
case ncclInt8: isMatch = (I1[idx] == expected.I1[idx]); break;
case ncclUint8: isMatch = (U1[idx] == expected.U1[idx]); break;
case ncclInt32: isMatch = (I4[idx] == expected.I4[idx]); break;
case ncclUint32: isMatch = (U4[idx] == expected.U4[idx]); break;
case ncclInt64: isMatch = (I8[idx] == expected.I8[idx]); break;
case ncclUint64: isMatch = (U8[idx] == expected.U8[idx]); break;
case ncclFloat16: isMatch = (fabs(__half2float(F2[idx]) - __half2float(expected.F2[idx])) < 9e-2); break;
case ncclFloat32: isMatch = (fabs(F4[idx] - expected.F4[idx]) < 1e-5); break;
case ncclFloat64: isMatch = (fabs(F8[idx] - expected.F8[idx]) < 1e-12); break;
case ncclBfloat16: isMatch = (fabs((float)B2[idx] - (float)expected.B2[idx]) < 9e-2); break;
default:
ERROR("Unsupported datatype\n");
return TEST_FAIL;
}
if (!isMatch) break;
}
if (verbose && !isMatch)
{
switch (dataType)
{
case ncclInt8:
ERROR("Expected output: %d. Actual output: %d at index %lu\n", expected.I1[idx], I1[idx], idx); break;
case ncclUint8:
ERROR("Expected output: %u. Actual output: %u at index %lu\n", expected.U1[idx], U1[idx], idx); break;
case ncclInt32:
ERROR("Expected output: %d. Actual output: %d at index %lu\n", expected.I4[idx], I4[idx], idx); break;
case ncclUint32:
ERROR("Expected output: %u. Actual output: %u at index %lu\n", expected.U4[idx], U4[idx], idx); break;
case ncclInt64:
ERROR("Expected output: %ld. Actual output: %ld at index %lu\n", expected.I8[idx], I8[idx], idx); break;
case ncclUint64:
ERROR("Expected output: %lu. Actual output: %lu at index %lu\n", expected.U8[idx], U8[idx], idx); break;
case ncclFloat16:
ERROR("Expected output: %f. Actual output: %f at index %lu\n", __half2float(expected.F2[idx]), __half2float(F2[idx]), idx); break;
case ncclFloat32:
ERROR("Expected output: %f. Actual output: %f at index %lu\n", expected.F4[idx], F4[idx], idx); break;
case ncclFloat64:
ERROR("Expected output: %lf. Actual output: %lf at index %lu\n", expected.F8[idx], F8[idx], idx); break;
case ncclBfloat16:
ERROR("Expected output: %f. Actual output: %f at index %lu\n", (float)expected.B2[idx], (float)B2[idx], idx); break;
default:
break;
}
}
return TEST_SUCCESS;
}
std::string PtrUnion::ToString(ncclDataType_t const dataType,
size_t const numElements) const
{
std::stringstream ss;
for (int i = 0; i < numElements; i++)
{
if (i) ss << " ";
switch (dataType)
{
case ncclInt8: ss << I1[i]; break;
case ncclUint8: ss << U1[i]; break;
case ncclInt32: ss << I4[i]; break;
case ncclUint32: ss << U4[i]; break;
case ncclInt64: ss << I8[i]; break;
case ncclUint64: ss << U8[i]; break;
case ncclFloat16: ss << __half2float(F2[i]); break;
case ncclFloat32: ss << F4[i]; break;
case ncclFloat64: ss << F8[i]; break;
case ncclBfloat16: ss << (float)B2[i]; break;
default: break;
}
}
return ss.str();
}
}
|