File: utils.cpp

package info (click to toggle)
rccl 5.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,332 kB
  • sloc: cpp: 33,357; ansic: 6,717; xml: 5,265; makefile: 508; sh: 365; awk: 243; python: 85
file content (1091 lines) | stat: -rw-r--r-- 47,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
/*************************************************************************
 * Copyright (c) 2015-2022, NVIDIA CORPORATION. All rights reserved.
 * Modifications Copyright (c) 2019-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * See LICENSE.txt for license information
 ************************************************************************/

#include "nccl.h"
#include "channel.h"
#include "nvmlwrap.h"
#include "bootstrap.h"
#include "transport.h"
#include "group.h"
#include "net.h"
#include "graph.h"
#include "argcheck.h"
#include <sched.h>
#include <fcntl.h>
#include <unistd.h>
#include <hip/hip_runtime.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <dlfcn.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "xml.h"
#include "coll_net.h"
#include "model.h"
#include "utils.h"
#include "rocm_smi/rocm_smi.h"

const char* ncclFuncStr[NCCL_NUM_FUNCTIONS+2] = { "Broadcast", "Reduce", "AllGather", "ReduceScatter", "AllReduce", "SendRecv", "AllToAllPivot" };
const char* ncclAlgoStr[NCCL_NUM_ALGORITHMS] = { "Tree", "Ring", "CollNet" };
const char* ncclProtoStr[NCCL_NUM_PROTOCOLS] = { "LL", "LL128", "Simple" };

extern NodeModel *node_model;

NCCL_PARAM(CollNetEnable, "COLLNET_ENABLE", 0);
NCCL_PARAM(GraphDumpFileRank, "GRAPH_DUMP_FILE_RANK", 0);
NCCL_PARAM(CollNetNodeThreshold, "COLLNET_NODE_THRESHOLD", 2);

thread_local int ncclDebugNoWarn = 0;
ncclCollNet_t* ncclCollNet = NULL;

// Get current Compute Capability
int ncclCudaCompCap() {
  int ccMajor = 1, ccMinor = 0;
  return ccMajor*10+ccMinor;
}

ncclResult_t int64ToBusId(int64_t id, char* busId) {
  sprintf(busId, "%04lx:%02lx:%02lx.%01lx", (id) >> 20, (id & 0xff000) >> 12, (id & 0xff0) >> 4, (id & 0xf));
  return ncclSuccess;
}

ncclResult_t busIdToInt64(const char* busId, int64_t* id) {
  const int size = strlen(busId);
  char* hexStr;
  NCCLCHECK(ncclCalloc(&hexStr, size));
  int hexOffset = 0;
  for (int i=0; i<size; i++) {
    char c = busId[i];
    if (c == '.' || c == ':') continue;
    if ((c >= '0' && c <= '9') ||
        (c >= 'A' && c <= 'F') ||
        (c >= 'a' && c <= 'f')) {
      hexStr[hexOffset++] = busId[i];
    } else break;
  }
  hexStr[hexOffset] = '\0';
  *id = strtol(hexStr, NULL, 16);
  free(hexStr);
  return ncclSuccess;
}

int ncclDebugLevel = -1;

void ncclDebugInit() {
  if (ncclDebugLevel != -1) return;
  const char* nccl_debug = getenv("NCCL_DEBUG");
  if (nccl_debug == NULL) {
    ncclDebugLevel = NCCL_LOG_INFO;
  } else if (strcasecmp(nccl_debug, "VERSION") == 0) {
    ncclDebugLevel = NCCL_LOG_VERSION;
  } else if (strcasecmp(nccl_debug, "WARN") == 0) {
    ncclDebugLevel = NCCL_LOG_WARN;
  } else if (strcasecmp(nccl_debug, "INFO") == 0) {
    ncclDebugLevel = NCCL_LOG_INFO;
  } else if (strcasecmp(nccl_debug, "ABORT") == 0) {
    ncclDebugLevel = NCCL_LOG_ABORT;
  } else if (strcasecmp(nccl_debug, "TRACE") == 0) {
    ncclDebugLevel = NCCL_LOG_TRACE;
  }
}

void ncclDebugLog(ncclDebugLogLevel level, unsigned long flags, const char *filefunc, int line, const char *fmt, ...) {
  if (ncclDebugLevel == -1) ncclDebugInit();
  if (level == NCCL_LOG_TRACE && ncclDebugLevel != NCCL_LOG_TRACE) return;
  if (ncclDebugLevel < level || ((flags & (NCCL_INIT|NCCL_GRAPH|NCCL_TUNING)) == 0)) return;

  char buffer[1024];
  size_t len = 0;
  if (node_model) len = snprintf(buffer, sizeof(buffer),
    "[%d:%d] ", node_model->nodeId, node_model->currRank);
  va_list args;
  va_start(args, fmt);
  vsprintf(buffer+len, fmt, args);
  va_end(args);
  printf("%s\n", buffer);
#if 0
  if (level == NCCL_LOG_WARN) {
    fprintf(stderr,"[%d:%d] %s:%d TOPO EXPL ABORT\n",
            node_model->nodeId, node_model->currRank, filefunc, line);
    abort();
  }
#endif
}

ncclResult_t ncclTopoGetSystem(const char* xmlTopoFile, struct ncclTopoSystem** system) {
  struct ncclXml* xml;
  NCCLCHECK(ncclCalloc(&xml, 1));
  NCCLCHECK(ncclTopoGetXmlFromFile(xmlTopoFile, xml, 0));
  NCCLCHECK(ncclTopoGetSystemFromXml(xml, system));
  free(xml);
  return ncclSuccess;
}


void initCollNet() {
  if (ncclParamCollNetEnable() == 1 && ncclCollNet == 0)
    ncclCollNet = (ncclCollNet_t*)0x12345678;
}

ncclResult_t initChannel(struct ncclComm* comm, int channelid) {
  struct ncclChannel* channel = comm->channels+channelid;
  if (channel->id != -1) return ncclSuccess;
  channel->id = channelid;

  // Ring index to user rank table.
  //NCCLCHECK(ncclCudaCalloc(&channel->ring.devUserRanks, comm->nRanks));
  NCCLCHECK(ncclCalloc(&channel->ring.userRanks, comm->nRanks));

  // Communication structures with peers.
  //NCCLCHECK(ncclCudaCalloc(&channel->devPeers, comm->nRanks+1)); // The extra one rank is for collnet root (i.e. network)
  NCCLCHECK(ncclCalloc(&channel->peers, comm->nRanks+1));
  for (size_t i=0; i<comm->nRanks+1; ++i) {
    for (int b=0; b<NCCL_MAX_CONNS; b++) {
      channel->peers[i].send[b].comm = comm;
      channel->peers[i].recv[b].comm = comm;
    }
  }

  // Per-channel operation list.
  //NCCLCHECK(ncclCudaHostCalloc(&channel->workFifo, NCCL_MAX_OPS));
  //if (ncclGdrCopy != NULL && ncclParamGdrCopyFifoEnable() == 1) {
    // GDRCOPY support
    // We allocate a workFifo in GDR mapped CUDA memory
    // But we still allocate the Host workFifo so that we
    // can copy the work elements to CUDA memory on kernel launch
    //NCCLCHECK(ncclGdrCudaCalloc(&channel->workFifoGdr, &channel->workFifoDev, NCCL_MAX_OPS, &channel->gdrMemDesc));
  //} else {
    // The device workFifo is the Host one
    //channel->workFifoDev = channel->workFifo;
  //}

  return ncclSuccess;
}

ncclResult_t fillInfo(struct ncclComm* comm, struct ncclPeerInfo* info, uint64_t commHash) {
  info->rank = comm->rank;
  info->cudaDev = node_model->rankToCudaDev(comm->rank);
  info->hostHash = node_model->hostHash;
  info->pidHash = node_model->pidHash;

  // Get the device MAJOR:MINOR of /dev/shm so we can use that
  // information to decide whether we can use SHM for inter-process
  // communication in a container environment
  //struct stat statbuf;
  //SYSCHECK(stat("/dev/shm", &statbuf), "stat");
  info->shmDev = 0x19;

  info->busId = node_model->getGpuBusId(comm->rank);

  // detect if fine grained memory is available on this GPU
  info->hasFineGrain = true;
  info->gdrSupport = 1;

  info->comm = comm;
  info->cudaCompCap = 1;
  return ncclSuccess;
}

static ncclResult_t setupChannel(struct ncclComm* comm, int channelId, int rank, int nranks, int* ringRanks) {
  TRACE(NCCL_INIT, "rank %d nranks %d", rank, nranks);
  NCCLCHECK(initChannel(comm, channelId));

  struct ncclRing* ring = &comm->channels[channelId].ring;
  // Find our ring-distance from rank zero and reorganize ranks to start with rank.
  int ixZero=0, ixRank=0;
  for (int i=0; i < nranks; i++) {
    if (ringRanks[i] == 0) ixZero = i;
    if (ringRanks[i] == rank) ixRank = i;
  }
  ring->index = (ixRank-ixZero + nranks)%nranks;
  for (int i=0; i<nranks; i++) {
    ring->userRanks[i] = ringRanks[(i+ixRank)%nranks];
  }
  return ncclSuccess;
}

template <int type>
static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclConnect* connect, int channelId, int peer, int connIndex, int* transportType) {
  struct ncclPeerInfo* myInfo = comm->peerInfo+comm->rank;
  struct ncclPeerInfo* peerInfo = comm->peerInfo+peer;
  struct ncclConnector* connector = (type == 1) ? comm->channels[channelId].peers[peer].send + connIndex :
                                                  comm->channels[channelId].peers[peer].recv + connIndex;
  // handle intra-node network connections
  int n1 = -1, n2 = -1;
  if (connIndex == NCCL_CONN_IDX_P2P_NET) {
    NCCLCHECK(ncclTopoGetIntraNetDev(comm->topo, comm->rank, graph, channelId, (type == 1) ? 1 : 0, &n1));
    NCCLCHECK(ncclTopoGetIntraNetDev(comm->topo, peer, graph, channelId, (type == 1) ? 0 : 1, &n2));
  }
  bool xgmi;
  NCCLCHECK(ncclTopoGetLinkType(comm->topo, myInfo->cudaDev, peerInfo->cudaDev, &xgmi));

  for (int t=0; t<NTRANSPORTS; t++) {
    if (graph == NULL && connIndex == NCCL_CONN_IDX_P2P_NET && (t == TRANSPORT_SHM || (!xgmi && t == TRANSPORT_P2P))) continue;
    if (graph && n1 >= 0 && n2 >= 0 && t != TRANSPORT_NET) continue;
    struct ncclTransport *transport = ncclTransports[t];
    struct ncclTransportComm* transportComm = type == 1 ? &transport->send : &transport->recv;
    int ret = 0;
    NCCLCHECK(transport->canConnect(&ret, comm->topo, graph, myInfo, peerInfo));
    if (ret) {
      connector->transportComm = transportComm;
      NCCLCHECK(transportComm->setup(comm, graph, myInfo, peerInfo, connect, connector, channelId, connIndex));
      if (transportType) *transportType = t;
      return ncclSuccess;
    }
  }
  WARN("No transport found for rank %d[%lx] -> rank %d[%lx]", myInfo->rank, myInfo->busId, peerInfo->rank, peerInfo->busId);
  return ncclSystemError;
}

ncclResult_t ncclTransportP2pConnect(struct ncclComm* comm, int channelId, int nrecv, int* peerRecv, int nsend, int* peerSend, int connIndex) {
  TRACE(NCCL_INIT, "nsend %d nrecv %d", nsend, nrecv);
  struct ncclChannel* channel = &comm->channels[channelId];
  uint32_t mask = 1 << channelId;
  for (int i=0; i<nrecv; i++) {
    int peer = peerRecv[i];
    if (peer == -1 || peer >= comm->nRanks || peer == comm->rank || channel->peers[peer].recv[connIndex].connected) continue;
    comm->connectRecv[peer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] |= mask;
  }
  for (int i=0; i<nsend; i++) {
    int peer = peerSend[i];
    if (peer == -1 || peer >= comm->nRanks || peer == comm->rank || channel->peers[peer].send[connIndex].connected) continue;
    comm->connectSend[peer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] |= mask;
  }
  return ncclSuccess;
}

void dumpData(struct ncclConnect* data, int ndata) {
  for (int n=0; n<ndata; n++) {
    printf("[%d] ", n);
    uint8_t* d = (uint8_t*)data;
    for (int i=0; i<sizeof(struct ncclConnect); i++) printf("%02x", d[i]);
    printf("\n");
  }
}

ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex, int* highestTransportType/*=NULL*/) {
  // Stream used during transport setup; need for P2P pre-connect + CUDA Graph
  int highestType = TRANSPORT_P2P;  // track highest transport type

  //hipStream_t transportSetupStream;
  //CUDACHECK(hipStreamCreateWithFlags(&transportSetupStream, hipStreamNonBlocking));

  struct ncclConnect data[2*MAXCHANNELS];
  for (int i=1; i<comm->nRanks; i++) {
    int bootstrapTag = (i<<8) + (graph ? graph->id+1 : 0);
    int recvPeer = (comm->rank - i + comm->nRanks) % comm->nRanks;
    int sendPeer = (comm->rank + i) % comm->nRanks;
    uint32_t recvMask = comm->connectRecv[recvPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)];
    uint32_t sendMask = comm->connectSend[sendPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)];

    struct ncclConnect* recvData = data;
    int sendChannels = 0, recvChannels = 0;
    int type;
    for (int c=0; c<MAXCHANNELS; c++) {
      if (recvMask & (1<<c)) {
        NCCLCHECK(selectTransport<0>(comm, graph, recvData+recvChannels++, c, recvPeer, connIndex, &type));
        if (type > highestType) highestType = type;
      }
    }
    struct ncclConnect* sendData = recvData+recvChannels;
    for (int c=0; c<MAXCHANNELS; c++) {
      if (sendMask & (1<<c)) {
        NCCLCHECK(selectTransport<1>(comm, graph, sendData+sendChannels++, c, sendPeer, connIndex, &type));
        if (type > highestType) highestType = type;
      }
    }

    if (sendPeer == recvPeer) {
      if (recvChannels+sendChannels) {
         //NCCLCHECK(bootstrapSend(comm->bootstrap, recvPeer, bootstrapTag, data, sizeof(struct ncclConnect)*(recvChannels+sendChannels)));
         //NCCLCHECK(bootstrapRecv(comm->bootstrap, recvPeer, bootstrapTag, data, sizeof(struct ncclConnect)*(recvChannels+sendChannels)));
         sendData = data;
         recvData = data+sendChannels;
      }
    } else {
      //if (recvChannels) NCCLCHECK(bootstrapSend(comm->bootstrap, recvPeer, bootstrapTag, recvData, sizeof(struct ncclConnect)*recvChannels));
      //if (sendChannels) NCCLCHECK(bootstrapSend(comm->bootstrap, sendPeer, bootstrapTag, sendData, sizeof(struct ncclConnect)*sendChannels));
      //if (sendChannels) NCCLCHECK(bootstrapRecv(comm->bootstrap, sendPeer, bootstrapTag, sendData, sizeof(struct ncclConnect)*sendChannels));
      //if (recvChannels) NCCLCHECK(bootstrapRecv(comm->bootstrap, recvPeer, bootstrapTag, recvData, sizeof(struct ncclConnect)*recvChannels));
    }

    for (int c=0; c<MAXCHANNELS; c++) {
      if (sendMask & (1<<c)) {
        struct ncclConnector* conn = comm->channels[c].peers[sendPeer].send + connIndex;
        //NCCLCHECK(conn->transportComm->connect(comm, sendData++, 1, comm->rank, conn));
        conn->connected = 1;
        //CUDACHECK(hipMemcpyAsync(&comm->channels[c].devPeers[sendPeer].send[connIndex], &conn->conn, sizeof(struct ncclConnInfo), hipMemcpyHostToDevice, transportSetupStream));
      }
    }
    for (int c=0; c<MAXCHANNELS; c++) {
      if (recvMask & (1<<c)) {
        struct ncclConnector* conn = comm->channels[c].peers[recvPeer].recv + connIndex;
        //NCCLCHECK(conn->transportComm->connect(comm, recvData++, 1, comm->rank, conn));
        conn->connected = 1;
        //CUDACHECK(hipMemcpyAsync(&comm->channels[c].devPeers[recvPeer].recv[connIndex], &conn->conn, sizeof(struct ncclConnInfo), hipMemcpyHostToDevice, transportSetupStream));
      }
    }
    comm->connectRecv[recvPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] = comm->connectSend[sendPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] = 0;
  }
  //CUDACHECK(hipStreamSynchronize(transportSetupStream));
  //CUDACHECK(hipStreamDestroy(transportSetupStream));
  if (highestTransportType != NULL) *highestTransportType = highestType;
  return ncclSuccess;
}

extern struct ncclTransport collNetTransport;

// All ranks must participate in collNetSetup call
// We do not NCCLCHECK this call because we would fall back to P2P network in case CollNet setup fails
int ncclTransportCollNetSetup(struct ncclComm* comm, struct ncclTopoGraph* collNetGraph, struct ncclChannel* channel, int masterRank, int masterPeer, int collNetGraphChannelId, int type) {
  int fail = 1;
  int rank = comm->rank;
  int nranks = comm->nRanks;
  int nMasters = comm->nNodes;
  int rankInCollNet = -1;
  int isMaster = (rank == masterRank) ? 1 : 0;
  struct {
    int collNetRank;
    ncclConnect connect;
  } sendrecvExchange;

  // check if we can connect to collnet, whose root is the nranks-th rank
  struct ncclPeerInfo *myInfo = comm->peerInfo+rank, *peerInfo = comm->peerInfo+nranks;
  peerInfo->rank = nranks;

  // send master receives connect info from peer recv master
  if (isMaster && type == collNetSend) {
    //NCCLCHECK(bootstrapRecv(comm->bootstrap, masterPeer, collNetGraph->id, &sendrecvExchange, sizeof(sendrecvExchange)));
    rankInCollNet = sendrecvExchange.collNetRank;
    TRACE(NCCL_INIT, "CollNet [send] : rank %d collNetRank %d collNetNranks %d received connect from rank %d", rank, rankInCollNet, nMasters, masterPeer);
  }

  // select
  struct ncclChannelPeer* root = channel->peers+nranks;
  // connector index: 0 for recv, 1 for send
  struct ncclConnector* conn = (type == collNetRecv) ? root->recv+type : root->send+type;
  struct ncclTransportComm* transportComm = (type == collNetRecv) ? &(collNetTransport.recv) : &(collNetTransport.send);
  conn->transportComm = transportComm;
  // setup
  struct ncclConnect myConnect;
  if (isMaster) {
    NCCLCHECK(transportComm->setup(comm, collNetGraph, myInfo, peerInfo, &myConnect, conn, collNetGraphChannelId, type));
  }
  // prepare connect handles
  ncclResult_t res;
  struct {
    int isMaster;
    ncclConnect connect;
  } *allConnects = NULL;
  ncclConnect *masterConnects = NULL;
  NCCLCHECK(ncclCalloc(&masterConnects, nMasters));
  if (type == collNetRecv) {  // recv side: AllGather
    // all ranks must participate
    NCCLCHECK(ncclCalloc(&allConnects, nranks));
    allConnects[rank].isMaster = isMaster;
    memcpy(&(allConnects[rank].connect), &myConnect, sizeof(struct ncclConnect));
    //NCCLCHECKGOTO(bootstrapAllGather(comm->bootstrap, allConnects, sizeof(*allConnects)), res, cleanup);
    // consolidate
    int c = 0;
    for (int r = 0; r < nranks; r++) {
      if (allConnects[r].isMaster) {
        memcpy(masterConnects+c, &(allConnects[r].connect), sizeof(struct ncclConnect));
        if (r == rank) rankInCollNet = c;
        c++;
      }
    }
  } else { // send side : copy in connect info received from peer recv master
    //if (isMaster) memcpy(masterConnects+rankInCollNet, &(sendrecvExchange.connect), sizeof(struct ncclConnect));
  }
  // connect
  if (isMaster) {
    //NCCLCHECKGOTO(transportComm->connect(comm, masterConnects, nMasters, rankInCollNet, conn), res, cleanup);
    struct ncclDevChannelPeer* devRoot = channel->devPeers+nranks;
    struct ncclConnInfo* devConnInfo = (type == collNetRecv) ? devRoot->recv+type : devRoot->send+type;
    //CUDACHECKGOTO(hipMemcpy(devConnInfo, &conn->conn, sizeof(struct ncclConnInfo), hipMemcpyHostToDevice), res, cleanup);
  }
  // recv side sends connect info to send side
  if (isMaster && type == collNetRecv) {
    sendrecvExchange.collNetRank = rankInCollNet;
    //memcpy(&sendrecvExchange.connect, masterConnects+rankInCollNet, sizeof(struct ncclConnect));
    //NCCLCHECKGOTO(bootstrapSend(comm->bootstrap, masterPeer, collNetGraph->id, &sendrecvExchange, sizeof(sendrecvExchange)), res, cleanup);
    TRACE(NCCL_INIT, "CollNet [recv] : rank %d collNetRank %d collNetNranks %d sent connect to rank %d", rank, rankInCollNet, nMasters, masterPeer);
  }
  fail = 0;
cleanup:
  if (allConnects != NULL) free(allConnects);
  if (masterConnects != NULL) free(masterConnects);
  return fail;
}

ncclResult_t ncclTransportCollNetCheck(struct ncclComm* comm, int collNetSetupFail) {
  // AllGather collNet setup results
  int allGatherFailures[NCCL_MAX_LOCAL_RANKS] = {0};
  allGatherFailures[comm->localRank] = collNetSetupFail;
  //NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, allGatherFailures, sizeof(int)));
  for (int i=0; i<comm->localRanks; i++) {
    if (allGatherFailures[i] != 0) {
      collNetSetupFail = 1;
      break;
    }
  }
  if (collNetSetupFail) {
    if (comm->localRank == 0) WARN("Cannot initialize CollNet, using point-to-point network instead");
    return ncclSystemError;
  }
  return ncclSuccess;
}

ncclResult_t ncclTransportCollNetFree(struct ncclComm* comm) {
  // Free collNet resources
  for (int r=0; r<comm->nChannels; r++) {
    struct ncclChannel* channel = comm->channels+r;
    struct ncclChannelPeer* peer = channel->peers+comm->nRanks;
    for (int b=0; b<NCCL_MAX_CONNS; b++) {
      struct ncclConnector* send = peer->send + b;
      //if (send->transportResources && send->transportComm) NCCLCHECK(send->transportComm->free(send));
      send->transportResources = NULL; // avoid double free
    }
    for (int b=0; b<NCCL_MAX_CONNS; b++) {
      struct ncclConnector* recv = peer->recv + b;
      //if (recv->transportResources && recv->transportComm) NCCLCHECK(recv->transportComm->free(recv));
      recv->transportResources = NULL; // avoid double free
    }
  }
  return ncclSuccess;
}

RCCL_PARAM(P2pNetDisable, "P2P_NET_DISABLE", 0);
RCCL_PARAM(PivotAlltoallEnable, "PIVOT_ALLTOALL_ENABLE", 0);

ncclResult_t initTransportsRank_1(struct ncclComm* comm, struct allGather3Data_t *allGather3Data,
  struct ncclTopoGraph& treeGraph, struct ncclTopoGraph& ringGraph, struct ncclTopoGraph& collNetGraph) {
  // We use 2 AllGathers
  // 1. { peerInfo, comm, compCap}
  // 2. { nChannels, graphInfo, topoRanks }

  int rank = comm->rank;
  int nranks = comm->nRanks;
  //uint64_t commHash = getHash(commId->internal, NCCL_UNIQUE_ID_BYTES);
  //TRACE(NCCL_INIT, "comm %p, commHash %lx, rank %d nranks %d - BEGIN", comm, commHash, rank, nranks);
  // [RCCL] Collect the PID of the root
  int rootPid;
  //NCCLCHECK(bootstrapInit(commId, comm));
  // [/RCCL]

  // AllGather1 - begin
  //NCCLCHECK(ncclCalloc(&comm->peerInfo, nranks+1)); // Extra rank to represent CollNet root
  //NCCLCHECK(fillInfo(comm, comm->peerInfo+rank, comm->rank));
  //NCCLCHECK(bootstrapAllGather(comm->bootstrap, comm->peerInfo, sizeof(struct ncclPeerInfo)));

  for (int i = 0; i < nranks; i++) {
    if ((i != rank) && (comm->peerInfo[i].hostHash == comm->peerInfo[rank].hostHash) && (comm->peerInfo[i].busId == comm->peerInfo[rank].busId)) {
      WARN("Duplicate GPU detected : rank %d and rank %d both on CUDA device %lx", rank, i, comm->peerInfo[rank].busId);
      return ncclInvalidUsage;
    }
  }

  // AllGather1 - end

  // Topo detection / System graph creation
  //NCCLCHECK(ncclTopoGetSystem(comm, &comm->topo));
  // save nRanks to ncclTopoSystem as indicator of multi-node
  comm->topo->nRanks = comm->nRanks;
  // init netGdrLevel
  comm->topo->netGdrLevel = -2;
  // init Pivot A2A related fields
  comm->topo->pivotA2AEnabled = false;
  comm->topo->pivotA2ANumBiRings = 0;
  // Compute paths between GPUs and NICs
  NCCLCHECK(ncclTopoComputePaths(comm->topo, comm));
  // Remove inaccessible GPUs and unused NICs
  NCCLCHECK(ncclTopoTrimSystem(comm->topo, comm));
  // Recompute paths after trimming
  NCCLCHECK(ncclTopoComputePaths(comm->topo, comm));
  // Init search
  NCCLCHECK(ncclTopoSearchInit(comm->topo));
  // Print final topology
  NCCLCHECK(ncclTopoPrint(comm->topo));

  // Set Affinity to a CPU local the our GPU, so that all memory we allocate
  // on the host is local.
  //NCCLCHECK(ncclTopoGetCpuAffinity(comm->topo, comm->rank, &comm->cpuAffinity));
  //cpu_set_t affinitySave;
 // if (CPU_COUNT(&comm->cpuAffinity)) {
    //sched_getaffinity(0, sizeof(cpu_set_t), &affinitySave);
    //sched_setaffinity(0, sizeof(cpu_set_t), &comm->cpuAffinity);
  //}
  ncclResult_t ret;

  // Launch proxy service thread
  //NCCLCHECK(ncclProxyCreate(comm));

  // Get rings and trees
  //struct ncclTopoGraph ringGraph;
  ringGraph.id = 0;
  ringGraph.pattern = NCCL_TOPO_PATTERN_RING;
  ringGraph.collNet = 0;
  ringGraph.minChannels = 1;
  ringGraph.maxChannels = MAXCHANNELS/2;
  NCCLCHECK(ncclTopoCompute(comm->topo, &ringGraph));
  NCCLCHECK(ncclTopoPrintGraph(comm->topo, &ringGraph));

  //struct ncclTopoGraph treeGraph;
  treeGraph.id = 1;
  treeGraph.pattern = NCCL_TOPO_PATTERN_BALANCED_TREE;
  treeGraph.collNet = 0;
  treeGraph.minChannels = comm->topo->nodes[NET].count != 0 ? 1 : ringGraph.nChannels;
  treeGraph.maxChannels = ringGraph.nChannels;
  NCCLCHECK(ncclTopoCompute(comm->topo, &treeGraph));
  NCCLCHECK(ncclTopoPrintGraph(comm->topo, &treeGraph));

  //struct ncclTopoGraph collNetGraph;
  collNetGraph.id = 2;
  collNetGraph.pattern = NCCL_TOPO_PATTERN_TREE;
  collNetGraph.collNet = 1;
  collNetGraph.minChannels = collNetGraph.maxChannels = ringGraph.nChannels;
  NCCLCHECK(ncclTopoCompute(comm->topo, &collNetGraph));
  NCCLCHECK(ncclTopoPrintGraph(comm->topo, &collNetGraph));

  bool allXgmi = true, hasPeerAccess = true;
  // Check that all the GPUs have peer access to one another and are XGMI connected
  for (int i = 0; i < nranks && hasPeerAccess; i++) {
    int cudaDev1 = comm->peerInfo[i].cudaDev;
    for (int j = 0; j < nranks; j++) {
      if (i == j) continue;
      int cudaDev2 = comm->peerInfo[j].cudaDev;
      int p2p;
      if (hipDeviceCanAccessPeer(&p2p, cudaDev1, cudaDev2) != hipSuccess || !p2p)
      {
        hasPeerAccess = false;
        break;
      }

      bool isXGMI;
      // Limit to single intermediate GPU for enabling clique
      NCCLCHECK(ncclTopoGetLinkType(comm->topo, i, j, &isXGMI, 1));
      allXgmi &= isXGMI;
    }
  }

  if (comm->rank == ncclParamGraphDumpFileRank()) {
    struct ncclTopoGraph* graphs[3] = { &ringGraph, &treeGraph, &collNetGraph };
    NCCLCHECK(ncclTopoDumpGraphs(comm->topo, 3, graphs));
  }

  // Determine local CollNet support before all-gather
  if (collNetSupport(comm)) {
    char *collNetEnable = getenv("NCCL_COLLNET_ENABLE");
    if (collNetEnable != NULL) {
      INFO(NCCL_ALL, "NCCL_COLLNET_ENABLE set by environment to %s.", collNetEnable);
      if (strcmp(collNetEnable, "1") == 0) {
        comm->collNetSupport = 1;
      }
    }
  }
  if (comm->collNetSupport == 1 && collNetGraph.nChannels <= 0) comm->collNetSupport = 0;

  if ((comm->topo->type & RCCL_TOPO_4P2H_ROME) && (comm->topo->type & RCCL_TOPO_GDR_ALL)) {
    if (rcclParamP2pNetDisable() == 0) {
      if (!(comm->topo->type & RCCL_TOPO_FORCE_INTRA)) comm->p2pNet = 1;
      INFO(NCCL_INIT, "RCCL enabled same node P2P over network");
    }
    else
      INFO(NCCL_INIT, "RCCL force disabled same node P2P over network");
  }
  // AllGather3 - begin
#if 0
  struct ncclGraphInfo {
    int pattern;
    int nChannels;
    int sameChannels;
    float speedIntra;
    float speedInter;
    int typeIntra;
    int typeInter;
  };

  struct {
    int netDev;
    int collNetSupport;
    int nc;
    struct ncclGraphInfo tree;
    struct ncclGraphInfo ring;
    struct ncclGraphInfo collNet;
    struct ncclTopoRanks topoRanks;
    bool pivotA2AEnabled;
  } *allGather3Data;

  NCCLCHECK(ncclCalloc(&allGather3Data, nranks));
#endif
  int idx;
  NCCLCHECK(ncclTopoIdToIndex(comm->topo, GPU, comm->busId, &idx));
  allGather3Data[rank].nc = 2;
  if (comm->topo->nodes[GPU].count == comm->topo->nRanks && comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 906 && allXgmi)
    allGather3Data[rank].nc = 4;
  if (comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 908)
    allGather3Data[rank].nc = std::max(4/ringGraph.nChannels, 2);
  if (comm->topo->nodes[GPU].count == comm->topo->nRanks && (comm->topo->type & RCCL_TOPO_CR8G))
    allGather3Data[rank].nc = 4;
  if (comm->topo->nodes[GPU].count == comm->topo->nRanks && comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 910)
    allGather3Data[rank].nc = 4;
  if (comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 910)
    allGather3Data[rank].nc = std::max(allGather3Data[rank].nc, 4/ringGraph.nChannels);
  if (ringGraph.nChannels > MAXCHANNELS/2)
    allGather3Data[rank].nc = 1;
  NCCLCHECK(ncclTopoGetLocalNet(comm->topo, rank, &allGather3Data[rank].netDev));
  allGather3Data[rank].tree.pattern = treeGraph.pattern;
  allGather3Data[rank].tree.nChannels = treeGraph.nChannels;
  allGather3Data[rank].tree.sameChannels = treeGraph.sameChannels;
  allGather3Data[rank].tree.speedIntra = treeGraph.speedIntra;
  allGather3Data[rank].tree.speedInter = treeGraph.speedInter;
  allGather3Data[rank].tree.typeIntra = treeGraph.typeIntra;
  allGather3Data[rank].tree.typeInter = treeGraph.typeInter;
  allGather3Data[rank].ring.pattern = ringGraph.pattern;
  allGather3Data[rank].ring.nChannels = ringGraph.nChannels;
  allGather3Data[rank].ring.sameChannels = ringGraph.sameChannels;
  allGather3Data[rank].ring.speedIntra = ringGraph.speedIntra;
  allGather3Data[rank].ring.speedInter = ringGraph.speedInter;
  allGather3Data[rank].ring.typeIntra = ringGraph.typeIntra;
  allGather3Data[rank].ring.typeInter = ringGraph.typeInter;
  allGather3Data[rank].collNet.pattern = collNetGraph.pattern;
  allGather3Data[rank].collNet.nChannels = collNetGraph.nChannels;
  allGather3Data[rank].collNet.sameChannels = collNetGraph.sameChannels;
  allGather3Data[rank].collNet.speedIntra = collNetGraph.speedIntra;
  allGather3Data[rank].collNet.speedInter = collNetGraph.speedInter;
  allGather3Data[rank].collNet.typeIntra = collNetGraph.typeIntra;
  allGather3Data[rank].collNet.typeInter = collNetGraph.typeInter;
  allGather3Data[rank].collNetSupport = comm->collNetSupport;
  allGather3Data[rank].pivotA2AEnabled = comm->topo->pivotA2AEnabled && rcclParamPivotAlltoallEnable();

  comm->nChannels = (comm->topo->nodes[GPU].count != comm->topo->nRanks && comm->topo->nodes[NET].count)
    ? std::min(treeGraph.nChannels, ringGraph.nChannels) : ringGraph.nChannels;
  NCCLCHECK(ncclTopoPreset(comm, &treeGraph, &ringGraph, &allGather3Data[rank].topoRanks));
  return ncclSuccess;
}

ncclResult_t initTransportsRank_3(struct ncclComm* comm, struct allGather3Data_t *allGather3Data,
  struct ncclTopoGraph& treeGraph, struct ncclTopoGraph& ringGraph, struct ncclTopoGraph& collNetGraph) {
  int rank = comm->rank;
  int nranks = comm->nRanks;
  ncclResult_t ret;
  //NCCLCHECK(bootstrapAllGather(comm->bootstrap, allGather3Data, sizeof(*allGather3Data)));

  // Determine nNodes, firstRanks, ...
  int *nodesFirstRank, *nodesTreePatterns;
  NCCLCHECK(ncclCalloc(&nodesFirstRank, nranks));
  NCCLCHECK(ncclCalloc(&nodesTreePatterns, nranks));
  NCCLCHECK(ncclCalloc(&comm->rankToNode, comm->nRanks));
  for (int r=0; r<nranks; r++) {
    int node;
    int firstRank = allGather3Data[r].topoRanks.ringRecv[0];
    for (node=0; node<comm->nNodes && nodesFirstRank[node] != firstRank; node++);
    if (node == comm->nNodes) {
      comm->nNodes++;
      nodesFirstRank[node] = firstRank;
      // Record tree pattern of each node as they can be different depending on sm arch
      nodesTreePatterns[node] = allGather3Data[r].tree.pattern;
    }
    comm->rankToNode[r] = node;
  }
  // Now that we know nNodes, alloc nodeRanks and compute localRanks for each node
  NCCLCHECK(ncclCalloc(&comm->nodeRanks, comm->nNodes));
  NCCLCHECK(ncclCalloc(&comm->rankToLocalRank, comm->nRanks));
  for (int r=0; r<comm->nRanks; r++) {
    int node = comm->rankToNode[r];
    comm->rankToLocalRank[r] = comm->nodeRanks[node].localRanks;
    comm->nodeRanks[node].localRanks++;
  }
  // Allocate ranks arrays for each node
  for (int n=0; n<comm->nNodes; n++) {
    NCCLCHECK(ncclCalloc(&comm->nodeRanks[n].localRankToRank, comm->nodeRanks[n].localRanks));
    comm->maxLocalRanks = std::max(comm->maxLocalRanks, comm->nodeRanks[n].localRanks);
    comm->nodeRanks[n].localRanks = 0;
  }
  // And fill the ranks arrays
  for (int r=0; r<comm->nRanks; r++) {
    int node = comm->rankToNode[r];
    comm->nodeRanks[node].localRankToRank[comm->nodeRanks[node].localRanks++] = r;
  }
  comm->node = comm->rankToNode[rank];
  comm->localRankToRank = comm->nodeRanks[comm->node].localRankToRank;
  comm->localRank = comm->rankToLocalRank[rank];
  comm->localRanks = comm->nodeRanks[comm->node].localRanks;

  TRACE(NCCL_INIT,"hostHash[%d] %lx localRank %d localRanks %d localRank0 %d",
        rank, comm->peerInfo[rank].hostHash, comm->localRank, comm->localRanks, comm->localRankToRank[0]);
  if (comm->localRank == -1 || comm->localRankToRank[0] == -1 || comm->localRanks == 0) {
    WARN("Failed to determine local ranks rank %d hostHash %lx pidHash %lx localRank %d localRanks %d localRank0 %d",
         rank, comm->peerInfo[rank].hostHash, comm->peerInfo[rank].pidHash,
         comm->localRank, comm->localRanks, comm->localRankToRank[0]);
    return ncclInternalError;
  }

  int nChannelsOrig = comm->nChannels;
  struct ncclTopoRanks** allTopoRanks;
  NCCLCHECK(ncclCalloc(&allTopoRanks, comm->nRanks));
  int nc = allGather3Data[0].nc;
  for (int i=0; i<nranks; i++) {
    comm->peerInfo[i].netDev = allGather3Data[i].netDev;
    allTopoRanks[i] = &allGather3Data[i].topoRanks;
    nc = std::min(allGather3Data[i].nc, nc);
    // Make sure we align all ranks so that the tuning is consistent across ranks
    treeGraph.nChannels = std::min(allGather3Data[i].tree.nChannels, treeGraph.nChannels);
    treeGraph.sameChannels = std::min(allGather3Data[i].tree.sameChannels, treeGraph.sameChannels);
    treeGraph.speedIntra = std::min(allGather3Data[i].tree.speedIntra, treeGraph.speedIntra);
    treeGraph.speedInter = std::min(allGather3Data[i].tree.speedInter, treeGraph.speedInter);
    treeGraph.typeIntra = std::max(allGather3Data[i].tree.typeIntra, treeGraph.typeIntra);
    treeGraph.typeInter = std::max(allGather3Data[i].tree.typeInter, treeGraph.typeInter);
    ringGraph.nChannels = std::min(allGather3Data[i].ring.nChannels, ringGraph.nChannels);
    ringGraph.sameChannels = std::min(allGather3Data[i].ring.sameChannels, ringGraph.sameChannels);
    ringGraph.speedIntra = std::min(allGather3Data[i].ring.speedIntra, ringGraph.speedIntra);
    ringGraph.speedInter = std::min(allGather3Data[i].ring.speedInter, ringGraph.speedInter);
    ringGraph.typeIntra = std::max(allGather3Data[i].ring.typeIntra, ringGraph.typeIntra);
    ringGraph.typeInter = std::max(allGather3Data[i].ring.typeInter, ringGraph.typeInter);
    collNetGraph.nChannels = std::min(allGather3Data[i].collNet.nChannels, collNetGraph.nChannels);
    collNetGraph.sameChannels = std::min(allGather3Data[i].collNet.sameChannels, collNetGraph.sameChannels);
    collNetGraph.speedIntra = std::min(allGather3Data[i].collNet.speedIntra, collNetGraph.speedIntra);
    collNetGraph.speedInter = std::min(allGather3Data[i].collNet.speedInter, collNetGraph.speedInter);
    collNetGraph.typeIntra = std::max(allGather3Data[i].collNet.typeIntra, collNetGraph.typeIntra);
    collNetGraph.typeInter = std::max(allGather3Data[i].collNet.typeInter, collNetGraph.typeInter);
    comm->collNetSupport = std::min(allGather3Data[i].collNetSupport, comm->collNetSupport);
    comm->topo->pivotA2AEnabled = comm->topo->pivotA2AEnabled && allGather3Data[i].pivotA2AEnabled;
  }

  comm->nChannels = treeGraph.nChannels = ringGraph.nChannels =
    (comm->topo->nodes[GPU].count != comm->topo->nRanks && comm->topo->nodes[NET].count)
    ? std::min(treeGraph.nChannels, ringGraph.nChannels) : ringGraph.nChannels;
  if (comm->nChannels < nChannelsOrig) {
    // We started duplicating channels during Preset(), so we need to move the
    // duplicated channels since we have removed some.
    for (int i=0; i<comm->nChannels; i++) memcpy(comm->channels+comm->nChannels+i, comm->channels+nChannelsOrig+i, sizeof(struct ncclChannel));
  }

  // Determine CollNet support after all-gather now that we know nNodes and each node localRanks
  if (comm->collNetSupport == 1) {
    int collNetNodeThreshold = ncclParamCollNetNodeThreshold();
    if (comm->nNodes < collNetNodeThreshold) {
      INFO(NCCL_INIT, "Communicator has %d nodes which is less than CollNet node threshold %d, disabling CollNet", comm->nNodes, collNetNodeThreshold);
      comm->collNetSupport = 0;
    }
    for (int n=0; n<comm->nNodes; n++) {
      if (comm->nodeRanks[n].localRanks > NCCL_MAX_DIRECT_ARITY+1) {
        WARN("CollNet currently only supports up to %d GPUs per node, disabling CollNet", NCCL_MAX_DIRECT_ARITY+1);
        comm->collNetSupport = 0;
        break;
      }
    }
  }

  int *rings;
  NCCLCHECK(ncclCalloc(&rings, nranks*MAXCHANNELS));
  NCCLCHECK(ncclTopoPostset(comm, nodesFirstRank, nodesTreePatterns, allTopoRanks, rings, &collNetGraph, nc));

  if (comm->topo->pivotA2ANumBiRings == 3) NCCLCHECK(ncclTreeBasePostset(comm, &treeGraph));

  free(allTopoRanks);
  free(nodesTreePatterns);
  free(nodesFirstRank);
  //free(allGather3Data);

  // AllGather3 - end

  TRACE(NCCL_INIT, "rank %d nranks %d - BUILT %d TREES/RINGS", rank, nranks, comm->nChannels);

  char line[1024];
  line[0]='\0';
  for (int c=0; c<comm->nChannels; c++) {
    struct ncclTree* tree = &comm->channels[c].tree;
    snprintf(line+strlen(line), 1023-strlen(line), " [%d] %d/%d/%d->%d->%d",
        c, tree->down[0], tree->down[1], tree->down[2], rank, tree->up);
    INFO(NCCL_GRAPH, "Ring %d : %d -> %d -> %d", c, comm->channels[c].ring.prev, comm->rank, comm->channels[c].ring.next);
  }
  line[1023] = '\0';
  INFO(NCCL_INIT, "Trees%s", line);

  //NCCLCHECK(computeBuffSizes(comm));

  // Connect with prev/next for each ring
  for (int c=0; c<comm->nChannels; c++) {
    struct ncclChannel* channel = comm->channels+c;
    NCCLCHECKGOTO(setupChannel(comm, c, rank, nranks, rings+c*nranks), ret, affinity_restore);
    if (comm->nRanks == 1) continue;
    NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->ring.prev, 1, &channel->ring.next, 0), ret, affinity_restore);
  }
  NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &ringGraph, 0), ret, affinity_restore);
  if (ringGraph.nIntraChannels && rcclParamP2pNetDisable() == 0) {
    comm->useIntraNet = 1;
    // Connect NET for intranode use
    for (int c=0; c<comm->nChannels; c++) {
      struct ncclChannel* channel = comm->channels+c;
      if (comm->nRanks == 1) continue;
      NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->ring.prev, 1, &channel->ring.next, NCCL_CONN_IDX_P2P_NET), ret, affinity_restore);
    }
    NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &ringGraph, NCCL_CONN_IDX_P2P_NET), ret, affinity_restore);
  }
  free(rings);
  INFO(NCCL_INIT, "Connected all rings");

  // Connect Trees
  for (int c=0; c<comm->nChannels; c++) {
    struct ncclChannel* channel = comm->channels+c;
    if (comm->nRanks == 1) continue;
    NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_TREE_ARITY, channel->tree.down, 1, &channel->tree.up, 0), ret, affinity_restore);
    NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->tree.up, NCCL_MAX_TREE_ARITY, channel->tree.down, 0), ret, affinity_restore);
  }
  NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &treeGraph, 0), ret, affinity_restore);
  INFO(NCCL_INIT, "Connected all trees");

  // Check if we can setup CollNet
  if (comm->collNetSupport > 0) {
    int collNetSetupFail = 0;
    int highestTypes[NCCL_MAX_LOCAL_RANKS] = {TRANSPORT_P2P};
    // Find all head ranks
    int nHeads = collNetGraph.nChannels;
    int *heads;
    NCCLCHECK(ncclCalloc(&heads, nHeads));
    // Head GPU index is always 0
    for (int c=0; c<nHeads; c++) {
      heads[c] = collNetGraph.intra[c*comm->localRanks+0];
    }
    for (int c=0; c<comm->nChannels; c++) {
      struct ncclChannel* channel = comm->channels+c;
      for (int h=0; h<nHeads; h++) {
        const int head = heads[h];
        collNetSetupFail = ncclTransportCollNetSetup(comm, &collNetGraph, channel, head, head, h, collNetRecv);
        collNetSetupFail += ncclTransportCollNetSetup(comm, &collNetGraph, channel, head, head, h, collNetSend);
      }
      // Verify CollNet setup across ranks after trying the first channel
      if (c == 0) {
        NCCLCHECKGOTO(ncclTransportCollNetCheck(comm, collNetSetupFail), ret, collnet_cleanup);
      }
    }
    // Verify CollNet setup across ranks after trying all channels
    NCCLCHECKGOTO(ncclTransportCollNetCheck(comm, collNetSetupFail), ret, collnet_cleanup);
    TRACE(NCCL_INIT, "rank %d Connected inter-node CollNet", rank);

    // Connect intra-node CollNet
    int highestTransportType0, highestTransportType1;
    for (int c=0; c<comm->nChannels; c++) {
      struct ncclChannel* channelRecv = comm->channels+c;
      NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_DIRECT_ARITY, channelRecv->collTree.up, NCCL_MAX_DIRECT_ARITY, channelRecv->collTree.down, 0), ret, collnet_cleanup);
    }
    NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 0, &highestTransportType0), ret, collnet_cleanup);
    for (int c=0; c<comm->nChannels; c++) {
      struct ncclChannel* channelSend = comm->channels+c;
      NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_DIRECT_ARITY, channelSend->collTree.down, NCCL_MAX_DIRECT_ARITY, channelSend->collTree.up, 1), ret, collnet_cleanup);
    }
    NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 1, &highestTransportType1), ret, collnet_cleanup);

    // Exchange highest intra-node transport type among ranks
    // because we need to know whether all ranks can p2p each other to determine whether we can directly read/write registered user buffer
    comm->intraHighestTransportType = highestTypes[comm->localRank] = highestTransportType0 > highestTransportType1 ? highestTransportType0 : highestTransportType1;
    //NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, highestTypes, sizeof(int)));
    for (int i=0; i<comm->localRanks; i++) {
      if (highestTypes[i] > comm->intraHighestTransportType)
        comm->intraHighestTransportType = highestTypes[i];
    }
    INFO(NCCL_INIT, "rank %d Connected CollNet comm %p nRanks %02d", rank, comm, comm->nRanks);

collnet_cleanup:
    free(heads);
    if (ret != ncclSuccess) {
      NCCLCHECK(ncclTransportCollNetFree(comm));
      comm->collNetSupport = 0;
      ret = ncclSuccess;
    }
  }
  TRACE(NCCL_INIT, "rank %d nranks %d - CONNECTED %d RINGS AND TREES", rank, nranks, comm->nChannels);

  // Compute time models for algorithm and protocol combinations
  do {
    int myCompCap = comm->peerInfo[rank].cudaCompCap;
    int minCompCap = myCompCap, maxCompCap = myCompCap;
    for (int i = 0; i < nranks; i++) {
      minCompCap = std::min(comm->peerInfo[i].cudaCompCap, minCompCap);
      maxCompCap = std::max(comm->peerInfo[i].cudaCompCap, maxCompCap);
    }
    NCCLCHECK(ncclTopoTuneModel(comm, minCompCap, maxCompCap, &treeGraph, &ringGraph, &collNetGraph));
  } while(0);

  // Compute nChannels per peer for p2p
  NCCLCHECK(ncclTopoComputeP2pChannels(comm));
#if 0
  do { // Setup p2p structures in comm->tasks
    struct ncclTasks* tasks = &comm->tasks;
    int nRanks = comm->nRanks;
    int node = comm->node;
    int nNodes = comm->nNodes;
    struct ncclNodeRanks *nodeRanks = comm->nodeRanks;
    int localRank = comm->localRank;
    tasks->peers = ncclMemoryStackAlloc<ncclTasks::Peer>(&comm->memPermanent, nRanks);
    tasks->p2pSendOrder = ncclMemoryStackAlloc<int>(&comm->memPermanent, nRanks);
    tasks->p2pRecvOrder = ncclMemoryStackAlloc<int>(&comm->memPermanent, nRanks);
    int s=0, r=0;
    // schedule delta 0, +1, -1, +2, -2, ...
    // also make sure we don't do 0 twice, nor +n/2 and -n/2 if n is even.
    for (int d=0; d <= nNodes/4; d++) {
      int deltas[4] = { d, (nNodes-d)%nNodes, nNodes/2-d, (nNodes-(nNodes/2-d))%nNodes };
      int index = 0;
      int delta = deltas[index];
    sched_delta:
      int recvNode = (node+nNodes-delta)%nNodes;
      int sendNode = (node+delta)%nNodes;
      int steps = comm->maxLocalRanks;
      for (int step=0; step < steps; step++) {
        int recvIndex = (localRank-step+steps)%steps;
        if (recvIndex < nodeRanks[recvNode].localRanks) {
          tasks->p2pRecvOrder[r] = nodeRanks[recvNode].localRankToRank[recvIndex];
          r++;
        }
        int sendIndex = (localRank+step)%steps;
        if (sendIndex < nodeRanks[sendNode].localRanks) {
          tasks->p2pSendOrder[s] = nodeRanks[sendNode].localRankToRank[sendIndex];
          s++;
        }
      }
      index++;
      if (index == 1 && deltas[1] == deltas[0]) index++;
      if (index == 2 && deltas[2] == deltas[0]) index++;
      if (index == 3 && deltas[3] == deltas[2]) index++;
      if (index == 3 && deltas[3] == deltas[1]) index++;
      if (index < 4) {
        delta = deltas[index];
        goto sched_delta;
      }
    }
    assert(s == nRanks && r == nRanks);
  } while (0);

  if (ncclParamNvbPreconnect()) {
    // Connect p2p when using NVB path
    int nvbNpeers;
    int* nvbPeers;
    NCCLCHECK(ncclTopoGetNvbGpus(comm->topo, comm->rank, &nvbNpeers, &nvbPeers));
    for (int r=0; r<nvbNpeers; r++) {
      int peer = nvbPeers[r];
      int channelId;
      for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
        NCCLCHECK(ncclChannelCompute(comm, peer, c, ncclFuncSend, &channelId));
        if (comm->channels[channelId].peers[peer].send[1].connected == 0) {
          comm->connectSend[peer] |= (1<<channelId);
        }
      }
      for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
        NCCLCHECK(ncclChannelCompute(comm, peer, c, ncclFuncRecv, &channelId));
        if (comm->channels[channelId].peers[peer].recv[1].connected == 0) {
          comm->connectRecv[peer] |= (1<<channelId);
        }
      }
    }
    NCCLCHECK(ncclTransportP2pSetup(comm, NULL, 1));
    free(nvbPeers);
  }
#endif
  // Connect to local net proxy
  struct ncclProxyConnector proxyConn;
  //NCCLCHECK(ncclProxyConnect(comm, TRANSPORT_NET, 1, comm->rank, &proxyConn));
  //NCCLCHECK(ncclProxyCall(&proxyConn, ncclProxyMsgSharedInit, &comm->p2pnChannels, sizeof(int), NULL, 0));

  // Then to remote ones when using PXN
  if (ncclPxnDisable(comm) == 0) {
    int nranks;
    int* pxnPeers;
    NCCLCHECK(ncclTopoGetPxnRanks(comm, &pxnPeers, &nranks));
    for (int r=0; r<nranks; r++) {
      //NCCLCHECK(ncclProxyConnect(comm, TRANSPORT_NET, 1, pxnPeers[r], &proxyConn));
     // NCCLCHECK(ncclProxyCall(&proxyConn, ncclProxyMsgSharedInit, &comm->p2pnChannels, sizeof(int), NULL, 0));
    }
    free(pxnPeers);
  }

  do {
    // Compute intra-process ranks
    int intraProcRank0 = -1, intraProcRank = -1, intraProcRanks = 0;
    for (int i = 0; i < nranks; i++) {
      if ((comm->peerInfo[i].hostHash == comm->peerInfo[rank].hostHash)
          && (comm->peerInfo[i].pidHash == comm->peerInfo[rank].pidHash)) {
        // Rank is in same process
        if (intraProcRanks == 0) intraProcRank0 = i;
        if (i == rank) intraProcRank = intraProcRanks;
        intraProcRanks++;
        if (intraProcRank0 == rank && rank != i) {
          comm->peerInfo[i].comm->intraNext = comm->intraNext;
          comm->intraNext = comm->peerInfo[i].comm;
        }
      }
    }
    TRACE(NCCL_INIT,"pidHash[%d] %lx intraProcRank %d intraProcRanks %d intraProcRank0 %d",
        rank, comm->peerInfo[rank].pidHash, intraProcRank, intraProcRanks, intraProcRank0);
    if (intraProcRank == -1 || intraProcRank0 == -1 || comm->peerInfo[intraProcRank0].comm == NULL) {
      WARN("Failed to determine intra proc ranks rank %d hostHash %lx pidHash %lx intraProcRank %d intraProcRanks %d intraProcRank0 %d",
          rank, comm->peerInfo[rank].hostHash, comm->peerInfo[rank].pidHash,
          intraProcRank, intraProcRanks, intraProcRank0);
      return ncclInternalError;
    }
    struct ncclComm* comm0 = comm->peerInfo[intraProcRank0].comm;
    assert(intraProcRank==0 ? comm==comm0 : true);
    comm->intraComm0 = comm0;
    comm->intraRefs = intraProcRank==0 ? intraProcRanks : 0;
    comm->intraRank = intraProcRank;
    comm->intraRanks = intraProcRanks;
    comm->intraBarrierPhase = 0;
    comm->intraBarrierCounter = 0;
    comm->intraBarrierGate = 0;
  } while(0);

#if 0
  if (comm->intraRank == 0) { // Load ncclParamLaunchMode
    char* str = getenv("NCCL_LAUNCH_MODE");
    enum ncclLaunchMode mode, modeOld;
    if (str && strcasecmp(str, "GROUP") == 0) {
      mode = ncclLaunchModeGroup;
    } else {
      mode = ncclLaunchModeParallel;
    }
    // In theory we could be racing with other communicators not associated with
    // this one if the user is connecting to multiple ncclUniqueId's concurrently.
    modeOld = __atomic_exchange_n(&ncclParamLaunchMode, mode, __ATOMIC_RELAXED);
    if (modeOld == ncclLaunchModeInvalid && str && str[0]!='\0') {
      INFO(NCCL_ENV, "NCCL_LAUNCH_MODE set by environment to %s", mode == ncclLaunchModeParallel ? "PARALLEL" : "GROUP");
    }
  }

  /* Local intra-node barrier */
  //NCCLCHECK(bootstrapBarrier(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, comm->localRankToRank[0]));

  // Unlink proxy shm to make sure it will be properly cleaned up.
  NCCLCHECK(ncclProxyShmUnlink(comm));
#endif

  // We should have allocated all buffers, collective fifos, ... we can
  // restore the affinity.
affinity_restore:
  //if (CPU_COUNT(&comm->cpuAffinity)) sched_setaffinity(0, sizeof(cpu_set_t), &affinitySave);
  if (ret != ncclSuccess) return ret;

  TRACE(NCCL_INIT, "rank %d nranks %d - DONE", rank, nranks);
  return ncclSuccess;
}

ncclResult_t rocm_smi_init() {
  return ncclSuccess;
}

ncclResult_t rocm_smi_getDeviceIndexByPciBusId(const char* pciBusId, uint32_t* deviceIndex) {
  return ncclSuccess;
}

ncclResult_t rocm_smi_getLinkInfo(int srcDev, int dstDev, RSMI_IO_LINK_TYPE* rsmi_type, int *hops, int *bw) {
  return ncclSuccess;
}

int ncclNetVersion(struct ncclComm* comm) {
  return 4;
}