1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
|
/*************************************************************************
* Copyright (c) 2015-2022, NVIDIA CORPORATION. All rights reserved.
* Modifications Copyright (c) 2019-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#include "nccl.h"
#include "channel.h"
#include "nvmlwrap.h"
#include "bootstrap.h"
#include "transport.h"
#include "group.h"
#include "net.h"
#include "graph.h"
#include "argcheck.h"
#include <sched.h>
#include <fcntl.h>
#include <unistd.h>
#include <hip/hip_runtime.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <dlfcn.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "xml.h"
#include "coll_net.h"
#include "model.h"
#include "utils.h"
#include "rocm_smi/rocm_smi.h"
const char* ncclFuncStr[NCCL_NUM_FUNCTIONS+2] = { "Broadcast", "Reduce", "AllGather", "ReduceScatter", "AllReduce", "SendRecv", "AllToAllPivot" };
const char* ncclAlgoStr[NCCL_NUM_ALGORITHMS] = { "Tree", "Ring", "CollNet" };
const char* ncclProtoStr[NCCL_NUM_PROTOCOLS] = { "LL", "LL128", "Simple" };
extern NodeModel *node_model;
NCCL_PARAM(CollNetEnable, "COLLNET_ENABLE", 0);
NCCL_PARAM(GraphDumpFileRank, "GRAPH_DUMP_FILE_RANK", 0);
NCCL_PARAM(CollNetNodeThreshold, "COLLNET_NODE_THRESHOLD", 2);
thread_local int ncclDebugNoWarn = 0;
ncclCollNet_t* ncclCollNet = NULL;
// Get current Compute Capability
int ncclCudaCompCap() {
int ccMajor = 1, ccMinor = 0;
return ccMajor*10+ccMinor;
}
ncclResult_t int64ToBusId(int64_t id, char* busId) {
sprintf(busId, "%04lx:%02lx:%02lx.%01lx", (id) >> 20, (id & 0xff000) >> 12, (id & 0xff0) >> 4, (id & 0xf));
return ncclSuccess;
}
ncclResult_t busIdToInt64(const char* busId, int64_t* id) {
const int size = strlen(busId);
char* hexStr;
NCCLCHECK(ncclCalloc(&hexStr, size));
int hexOffset = 0;
for (int i=0; i<size; i++) {
char c = busId[i];
if (c == '.' || c == ':') continue;
if ((c >= '0' && c <= '9') ||
(c >= 'A' && c <= 'F') ||
(c >= 'a' && c <= 'f')) {
hexStr[hexOffset++] = busId[i];
} else break;
}
hexStr[hexOffset] = '\0';
*id = strtol(hexStr, NULL, 16);
free(hexStr);
return ncclSuccess;
}
int ncclDebugLevel = -1;
void ncclDebugInit() {
if (ncclDebugLevel != -1) return;
const char* nccl_debug = getenv("NCCL_DEBUG");
if (nccl_debug == NULL) {
ncclDebugLevel = NCCL_LOG_INFO;
} else if (strcasecmp(nccl_debug, "VERSION") == 0) {
ncclDebugLevel = NCCL_LOG_VERSION;
} else if (strcasecmp(nccl_debug, "WARN") == 0) {
ncclDebugLevel = NCCL_LOG_WARN;
} else if (strcasecmp(nccl_debug, "INFO") == 0) {
ncclDebugLevel = NCCL_LOG_INFO;
} else if (strcasecmp(nccl_debug, "ABORT") == 0) {
ncclDebugLevel = NCCL_LOG_ABORT;
} else if (strcasecmp(nccl_debug, "TRACE") == 0) {
ncclDebugLevel = NCCL_LOG_TRACE;
}
}
void ncclDebugLog(ncclDebugLogLevel level, unsigned long flags, const char *filefunc, int line, const char *fmt, ...) {
if (ncclDebugLevel == -1) ncclDebugInit();
if (level == NCCL_LOG_TRACE && ncclDebugLevel != NCCL_LOG_TRACE) return;
if (ncclDebugLevel < level || ((flags & (NCCL_INIT|NCCL_GRAPH|NCCL_TUNING)) == 0)) return;
char buffer[1024];
size_t len = 0;
if (node_model) len = snprintf(buffer, sizeof(buffer),
"[%d:%d] ", node_model->nodeId, node_model->currRank);
va_list args;
va_start(args, fmt);
vsprintf(buffer+len, fmt, args);
va_end(args);
printf("%s\n", buffer);
#if 0
if (level == NCCL_LOG_WARN) {
fprintf(stderr,"[%d:%d] %s:%d TOPO EXPL ABORT\n",
node_model->nodeId, node_model->currRank, filefunc, line);
abort();
}
#endif
}
ncclResult_t ncclTopoGetSystem(const char* xmlTopoFile, struct ncclTopoSystem** system) {
struct ncclXml* xml;
NCCLCHECK(ncclCalloc(&xml, 1));
NCCLCHECK(ncclTopoGetXmlFromFile(xmlTopoFile, xml, 0));
NCCLCHECK(ncclTopoGetSystemFromXml(xml, system));
free(xml);
return ncclSuccess;
}
void initCollNet() {
if (ncclParamCollNetEnable() == 1 && ncclCollNet == 0)
ncclCollNet = (ncclCollNet_t*)0x12345678;
}
ncclResult_t initChannel(struct ncclComm* comm, int channelid) {
struct ncclChannel* channel = comm->channels+channelid;
if (channel->id != -1) return ncclSuccess;
channel->id = channelid;
// Ring index to user rank table.
//NCCLCHECK(ncclCudaCalloc(&channel->ring.devUserRanks, comm->nRanks));
NCCLCHECK(ncclCalloc(&channel->ring.userRanks, comm->nRanks));
// Communication structures with peers.
//NCCLCHECK(ncclCudaCalloc(&channel->devPeers, comm->nRanks+1)); // The extra one rank is for collnet root (i.e. network)
NCCLCHECK(ncclCalloc(&channel->peers, comm->nRanks+1));
for (size_t i=0; i<comm->nRanks+1; ++i) {
for (int b=0; b<NCCL_MAX_CONNS; b++) {
channel->peers[i].send[b].comm = comm;
channel->peers[i].recv[b].comm = comm;
}
}
// Per-channel operation list.
//NCCLCHECK(ncclCudaHostCalloc(&channel->workFifo, NCCL_MAX_OPS));
//if (ncclGdrCopy != NULL && ncclParamGdrCopyFifoEnable() == 1) {
// GDRCOPY support
// We allocate a workFifo in GDR mapped CUDA memory
// But we still allocate the Host workFifo so that we
// can copy the work elements to CUDA memory on kernel launch
//NCCLCHECK(ncclGdrCudaCalloc(&channel->workFifoGdr, &channel->workFifoDev, NCCL_MAX_OPS, &channel->gdrMemDesc));
//} else {
// The device workFifo is the Host one
//channel->workFifoDev = channel->workFifo;
//}
return ncclSuccess;
}
ncclResult_t fillInfo(struct ncclComm* comm, struct ncclPeerInfo* info, uint64_t commHash) {
info->rank = comm->rank;
info->cudaDev = node_model->rankToCudaDev(comm->rank);
info->hostHash = node_model->hostHash;
info->pidHash = node_model->pidHash;
// Get the device MAJOR:MINOR of /dev/shm so we can use that
// information to decide whether we can use SHM for inter-process
// communication in a container environment
//struct stat statbuf;
//SYSCHECK(stat("/dev/shm", &statbuf), "stat");
info->shmDev = 0x19;
info->busId = node_model->getGpuBusId(comm->rank);
// detect if fine grained memory is available on this GPU
info->hasFineGrain = true;
info->gdrSupport = 1;
info->comm = comm;
info->cudaCompCap = 1;
return ncclSuccess;
}
static ncclResult_t setupChannel(struct ncclComm* comm, int channelId, int rank, int nranks, int* ringRanks) {
TRACE(NCCL_INIT, "rank %d nranks %d", rank, nranks);
NCCLCHECK(initChannel(comm, channelId));
struct ncclRing* ring = &comm->channels[channelId].ring;
// Find our ring-distance from rank zero and reorganize ranks to start with rank.
int ixZero=0, ixRank=0;
for (int i=0; i < nranks; i++) {
if (ringRanks[i] == 0) ixZero = i;
if (ringRanks[i] == rank) ixRank = i;
}
ring->index = (ixRank-ixZero + nranks)%nranks;
for (int i=0; i<nranks; i++) {
ring->userRanks[i] = ringRanks[(i+ixRank)%nranks];
}
return ncclSuccess;
}
template <int type>
static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclConnect* connect, int channelId, int peer, int connIndex, int* transportType) {
struct ncclPeerInfo* myInfo = comm->peerInfo+comm->rank;
struct ncclPeerInfo* peerInfo = comm->peerInfo+peer;
struct ncclConnector* connector = (type == 1) ? comm->channels[channelId].peers[peer].send + connIndex :
comm->channels[channelId].peers[peer].recv + connIndex;
// handle intra-node network connections
int n1 = -1, n2 = -1;
if (connIndex == NCCL_CONN_IDX_P2P_NET) {
NCCLCHECK(ncclTopoGetIntraNetDev(comm->topo, comm->rank, graph, channelId, (type == 1) ? 1 : 0, &n1));
NCCLCHECK(ncclTopoGetIntraNetDev(comm->topo, peer, graph, channelId, (type == 1) ? 0 : 1, &n2));
}
bool xgmi;
NCCLCHECK(ncclTopoGetLinkType(comm->topo, myInfo->cudaDev, peerInfo->cudaDev, &xgmi));
for (int t=0; t<NTRANSPORTS; t++) {
if (graph == NULL && connIndex == NCCL_CONN_IDX_P2P_NET && (t == TRANSPORT_SHM || (!xgmi && t == TRANSPORT_P2P))) continue;
if (graph && n1 >= 0 && n2 >= 0 && t != TRANSPORT_NET) continue;
struct ncclTransport *transport = ncclTransports[t];
struct ncclTransportComm* transportComm = type == 1 ? &transport->send : &transport->recv;
int ret = 0;
NCCLCHECK(transport->canConnect(&ret, comm->topo, graph, myInfo, peerInfo));
if (ret) {
connector->transportComm = transportComm;
NCCLCHECK(transportComm->setup(comm, graph, myInfo, peerInfo, connect, connector, channelId, connIndex));
if (transportType) *transportType = t;
return ncclSuccess;
}
}
WARN("No transport found for rank %d[%lx] -> rank %d[%lx]", myInfo->rank, myInfo->busId, peerInfo->rank, peerInfo->busId);
return ncclSystemError;
}
ncclResult_t ncclTransportP2pConnect(struct ncclComm* comm, int channelId, int nrecv, int* peerRecv, int nsend, int* peerSend, int connIndex) {
TRACE(NCCL_INIT, "nsend %d nrecv %d", nsend, nrecv);
struct ncclChannel* channel = &comm->channels[channelId];
uint32_t mask = 1 << channelId;
for (int i=0; i<nrecv; i++) {
int peer = peerRecv[i];
if (peer == -1 || peer >= comm->nRanks || peer == comm->rank || channel->peers[peer].recv[connIndex].connected) continue;
comm->connectRecv[peer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] |= mask;
}
for (int i=0; i<nsend; i++) {
int peer = peerSend[i];
if (peer == -1 || peer >= comm->nRanks || peer == comm->rank || channel->peers[peer].send[connIndex].connected) continue;
comm->connectSend[peer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] |= mask;
}
return ncclSuccess;
}
void dumpData(struct ncclConnect* data, int ndata) {
for (int n=0; n<ndata; n++) {
printf("[%d] ", n);
uint8_t* d = (uint8_t*)data;
for (int i=0; i<sizeof(struct ncclConnect); i++) printf("%02x", d[i]);
printf("\n");
}
}
ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex, int* highestTransportType/*=NULL*/) {
// Stream used during transport setup; need for P2P pre-connect + CUDA Graph
int highestType = TRANSPORT_P2P; // track highest transport type
//hipStream_t transportSetupStream;
//CUDACHECK(hipStreamCreateWithFlags(&transportSetupStream, hipStreamNonBlocking));
struct ncclConnect data[2*MAXCHANNELS];
for (int i=1; i<comm->nRanks; i++) {
int bootstrapTag = (i<<8) + (graph ? graph->id+1 : 0);
int recvPeer = (comm->rank - i + comm->nRanks) % comm->nRanks;
int sendPeer = (comm->rank + i) % comm->nRanks;
uint32_t recvMask = comm->connectRecv[recvPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)];
uint32_t sendMask = comm->connectSend[sendPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)];
struct ncclConnect* recvData = data;
int sendChannels = 0, recvChannels = 0;
int type;
for (int c=0; c<MAXCHANNELS; c++) {
if (recvMask & (1<<c)) {
NCCLCHECK(selectTransport<0>(comm, graph, recvData+recvChannels++, c, recvPeer, connIndex, &type));
if (type > highestType) highestType = type;
}
}
struct ncclConnect* sendData = recvData+recvChannels;
for (int c=0; c<MAXCHANNELS; c++) {
if (sendMask & (1<<c)) {
NCCLCHECK(selectTransport<1>(comm, graph, sendData+sendChannels++, c, sendPeer, connIndex, &type));
if (type > highestType) highestType = type;
}
}
if (sendPeer == recvPeer) {
if (recvChannels+sendChannels) {
//NCCLCHECK(bootstrapSend(comm->bootstrap, recvPeer, bootstrapTag, data, sizeof(struct ncclConnect)*(recvChannels+sendChannels)));
//NCCLCHECK(bootstrapRecv(comm->bootstrap, recvPeer, bootstrapTag, data, sizeof(struct ncclConnect)*(recvChannels+sendChannels)));
sendData = data;
recvData = data+sendChannels;
}
} else {
//if (recvChannels) NCCLCHECK(bootstrapSend(comm->bootstrap, recvPeer, bootstrapTag, recvData, sizeof(struct ncclConnect)*recvChannels));
//if (sendChannels) NCCLCHECK(bootstrapSend(comm->bootstrap, sendPeer, bootstrapTag, sendData, sizeof(struct ncclConnect)*sendChannels));
//if (sendChannels) NCCLCHECK(bootstrapRecv(comm->bootstrap, sendPeer, bootstrapTag, sendData, sizeof(struct ncclConnect)*sendChannels));
//if (recvChannels) NCCLCHECK(bootstrapRecv(comm->bootstrap, recvPeer, bootstrapTag, recvData, sizeof(struct ncclConnect)*recvChannels));
}
for (int c=0; c<MAXCHANNELS; c++) {
if (sendMask & (1<<c)) {
struct ncclConnector* conn = comm->channels[c].peers[sendPeer].send + connIndex;
//NCCLCHECK(conn->transportComm->connect(comm, sendData++, 1, comm->rank, conn));
conn->connected = 1;
//CUDACHECK(hipMemcpyAsync(&comm->channels[c].devPeers[sendPeer].send[connIndex], &conn->conn, sizeof(struct ncclConnInfo), hipMemcpyHostToDevice, transportSetupStream));
}
}
for (int c=0; c<MAXCHANNELS; c++) {
if (recvMask & (1<<c)) {
struct ncclConnector* conn = comm->channels[c].peers[recvPeer].recv + connIndex;
//NCCLCHECK(conn->transportComm->connect(comm, recvData++, 1, comm->rank, conn));
conn->connected = 1;
//CUDACHECK(hipMemcpyAsync(&comm->channels[c].devPeers[recvPeer].recv[connIndex], &conn->conn, sizeof(struct ncclConnInfo), hipMemcpyHostToDevice, transportSetupStream));
}
}
comm->connectRecv[recvPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] = comm->connectSend[sendPeer+comm->nRanks*(connIndex == NCCL_CONN_IDX_P2P_NET ? NCCL_CONN_IDX_P2P_NET : 0)] = 0;
}
//CUDACHECK(hipStreamSynchronize(transportSetupStream));
//CUDACHECK(hipStreamDestroy(transportSetupStream));
if (highestTransportType != NULL) *highestTransportType = highestType;
return ncclSuccess;
}
extern struct ncclTransport collNetTransport;
// All ranks must participate in collNetSetup call
// We do not NCCLCHECK this call because we would fall back to P2P network in case CollNet setup fails
int ncclTransportCollNetSetup(struct ncclComm* comm, struct ncclTopoGraph* collNetGraph, struct ncclChannel* channel, int masterRank, int masterPeer, int collNetGraphChannelId, int type) {
int fail = 1;
int rank = comm->rank;
int nranks = comm->nRanks;
int nMasters = comm->nNodes;
int rankInCollNet = -1;
int isMaster = (rank == masterRank) ? 1 : 0;
struct {
int collNetRank;
ncclConnect connect;
} sendrecvExchange;
// check if we can connect to collnet, whose root is the nranks-th rank
struct ncclPeerInfo *myInfo = comm->peerInfo+rank, *peerInfo = comm->peerInfo+nranks;
peerInfo->rank = nranks;
// send master receives connect info from peer recv master
if (isMaster && type == collNetSend) {
//NCCLCHECK(bootstrapRecv(comm->bootstrap, masterPeer, collNetGraph->id, &sendrecvExchange, sizeof(sendrecvExchange)));
rankInCollNet = sendrecvExchange.collNetRank;
TRACE(NCCL_INIT, "CollNet [send] : rank %d collNetRank %d collNetNranks %d received connect from rank %d", rank, rankInCollNet, nMasters, masterPeer);
}
// select
struct ncclChannelPeer* root = channel->peers+nranks;
// connector index: 0 for recv, 1 for send
struct ncclConnector* conn = (type == collNetRecv) ? root->recv+type : root->send+type;
struct ncclTransportComm* transportComm = (type == collNetRecv) ? &(collNetTransport.recv) : &(collNetTransport.send);
conn->transportComm = transportComm;
// setup
struct ncclConnect myConnect;
if (isMaster) {
NCCLCHECK(transportComm->setup(comm, collNetGraph, myInfo, peerInfo, &myConnect, conn, collNetGraphChannelId, type));
}
// prepare connect handles
ncclResult_t res;
struct {
int isMaster;
ncclConnect connect;
} *allConnects = NULL;
ncclConnect *masterConnects = NULL;
NCCLCHECK(ncclCalloc(&masterConnects, nMasters));
if (type == collNetRecv) { // recv side: AllGather
// all ranks must participate
NCCLCHECK(ncclCalloc(&allConnects, nranks));
allConnects[rank].isMaster = isMaster;
memcpy(&(allConnects[rank].connect), &myConnect, sizeof(struct ncclConnect));
//NCCLCHECKGOTO(bootstrapAllGather(comm->bootstrap, allConnects, sizeof(*allConnects)), res, cleanup);
// consolidate
int c = 0;
for (int r = 0; r < nranks; r++) {
if (allConnects[r].isMaster) {
memcpy(masterConnects+c, &(allConnects[r].connect), sizeof(struct ncclConnect));
if (r == rank) rankInCollNet = c;
c++;
}
}
} else { // send side : copy in connect info received from peer recv master
//if (isMaster) memcpy(masterConnects+rankInCollNet, &(sendrecvExchange.connect), sizeof(struct ncclConnect));
}
// connect
if (isMaster) {
//NCCLCHECKGOTO(transportComm->connect(comm, masterConnects, nMasters, rankInCollNet, conn), res, cleanup);
struct ncclDevChannelPeer* devRoot = channel->devPeers+nranks;
struct ncclConnInfo* devConnInfo = (type == collNetRecv) ? devRoot->recv+type : devRoot->send+type;
//CUDACHECKGOTO(hipMemcpy(devConnInfo, &conn->conn, sizeof(struct ncclConnInfo), hipMemcpyHostToDevice), res, cleanup);
}
// recv side sends connect info to send side
if (isMaster && type == collNetRecv) {
sendrecvExchange.collNetRank = rankInCollNet;
//memcpy(&sendrecvExchange.connect, masterConnects+rankInCollNet, sizeof(struct ncclConnect));
//NCCLCHECKGOTO(bootstrapSend(comm->bootstrap, masterPeer, collNetGraph->id, &sendrecvExchange, sizeof(sendrecvExchange)), res, cleanup);
TRACE(NCCL_INIT, "CollNet [recv] : rank %d collNetRank %d collNetNranks %d sent connect to rank %d", rank, rankInCollNet, nMasters, masterPeer);
}
fail = 0;
cleanup:
if (allConnects != NULL) free(allConnects);
if (masterConnects != NULL) free(masterConnects);
return fail;
}
ncclResult_t ncclTransportCollNetCheck(struct ncclComm* comm, int collNetSetupFail) {
// AllGather collNet setup results
int allGatherFailures[NCCL_MAX_LOCAL_RANKS] = {0};
allGatherFailures[comm->localRank] = collNetSetupFail;
//NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, allGatherFailures, sizeof(int)));
for (int i=0; i<comm->localRanks; i++) {
if (allGatherFailures[i] != 0) {
collNetSetupFail = 1;
break;
}
}
if (collNetSetupFail) {
if (comm->localRank == 0) WARN("Cannot initialize CollNet, using point-to-point network instead");
return ncclSystemError;
}
return ncclSuccess;
}
ncclResult_t ncclTransportCollNetFree(struct ncclComm* comm) {
// Free collNet resources
for (int r=0; r<comm->nChannels; r++) {
struct ncclChannel* channel = comm->channels+r;
struct ncclChannelPeer* peer = channel->peers+comm->nRanks;
for (int b=0; b<NCCL_MAX_CONNS; b++) {
struct ncclConnector* send = peer->send + b;
//if (send->transportResources && send->transportComm) NCCLCHECK(send->transportComm->free(send));
send->transportResources = NULL; // avoid double free
}
for (int b=0; b<NCCL_MAX_CONNS; b++) {
struct ncclConnector* recv = peer->recv + b;
//if (recv->transportResources && recv->transportComm) NCCLCHECK(recv->transportComm->free(recv));
recv->transportResources = NULL; // avoid double free
}
}
return ncclSuccess;
}
RCCL_PARAM(P2pNetDisable, "P2P_NET_DISABLE", 0);
RCCL_PARAM(PivotAlltoallEnable, "PIVOT_ALLTOALL_ENABLE", 0);
ncclResult_t initTransportsRank_1(struct ncclComm* comm, struct allGather3Data_t *allGather3Data,
struct ncclTopoGraph& treeGraph, struct ncclTopoGraph& ringGraph, struct ncclTopoGraph& collNetGraph) {
// We use 2 AllGathers
// 1. { peerInfo, comm, compCap}
// 2. { nChannels, graphInfo, topoRanks }
int rank = comm->rank;
int nranks = comm->nRanks;
//uint64_t commHash = getHash(commId->internal, NCCL_UNIQUE_ID_BYTES);
//TRACE(NCCL_INIT, "comm %p, commHash %lx, rank %d nranks %d - BEGIN", comm, commHash, rank, nranks);
// [RCCL] Collect the PID of the root
int rootPid;
//NCCLCHECK(bootstrapInit(commId, comm));
// [/RCCL]
// AllGather1 - begin
//NCCLCHECK(ncclCalloc(&comm->peerInfo, nranks+1)); // Extra rank to represent CollNet root
//NCCLCHECK(fillInfo(comm, comm->peerInfo+rank, comm->rank));
//NCCLCHECK(bootstrapAllGather(comm->bootstrap, comm->peerInfo, sizeof(struct ncclPeerInfo)));
for (int i = 0; i < nranks; i++) {
if ((i != rank) && (comm->peerInfo[i].hostHash == comm->peerInfo[rank].hostHash) && (comm->peerInfo[i].busId == comm->peerInfo[rank].busId)) {
WARN("Duplicate GPU detected : rank %d and rank %d both on CUDA device %lx", rank, i, comm->peerInfo[rank].busId);
return ncclInvalidUsage;
}
}
// AllGather1 - end
// Topo detection / System graph creation
//NCCLCHECK(ncclTopoGetSystem(comm, &comm->topo));
// save nRanks to ncclTopoSystem as indicator of multi-node
comm->topo->nRanks = comm->nRanks;
// init netGdrLevel
comm->topo->netGdrLevel = -2;
// init Pivot A2A related fields
comm->topo->pivotA2AEnabled = false;
comm->topo->pivotA2ANumBiRings = 0;
// Compute paths between GPUs and NICs
NCCLCHECK(ncclTopoComputePaths(comm->topo, comm));
// Remove inaccessible GPUs and unused NICs
NCCLCHECK(ncclTopoTrimSystem(comm->topo, comm));
// Recompute paths after trimming
NCCLCHECK(ncclTopoComputePaths(comm->topo, comm));
// Init search
NCCLCHECK(ncclTopoSearchInit(comm->topo));
// Print final topology
NCCLCHECK(ncclTopoPrint(comm->topo));
// Set Affinity to a CPU local the our GPU, so that all memory we allocate
// on the host is local.
//NCCLCHECK(ncclTopoGetCpuAffinity(comm->topo, comm->rank, &comm->cpuAffinity));
//cpu_set_t affinitySave;
// if (CPU_COUNT(&comm->cpuAffinity)) {
//sched_getaffinity(0, sizeof(cpu_set_t), &affinitySave);
//sched_setaffinity(0, sizeof(cpu_set_t), &comm->cpuAffinity);
//}
ncclResult_t ret;
// Launch proxy service thread
//NCCLCHECK(ncclProxyCreate(comm));
// Get rings and trees
//struct ncclTopoGraph ringGraph;
ringGraph.id = 0;
ringGraph.pattern = NCCL_TOPO_PATTERN_RING;
ringGraph.collNet = 0;
ringGraph.minChannels = 1;
ringGraph.maxChannels = MAXCHANNELS/2;
NCCLCHECK(ncclTopoCompute(comm->topo, &ringGraph));
NCCLCHECK(ncclTopoPrintGraph(comm->topo, &ringGraph));
//struct ncclTopoGraph treeGraph;
treeGraph.id = 1;
treeGraph.pattern = NCCL_TOPO_PATTERN_BALANCED_TREE;
treeGraph.collNet = 0;
treeGraph.minChannels = comm->topo->nodes[NET].count != 0 ? 1 : ringGraph.nChannels;
treeGraph.maxChannels = ringGraph.nChannels;
NCCLCHECK(ncclTopoCompute(comm->topo, &treeGraph));
NCCLCHECK(ncclTopoPrintGraph(comm->topo, &treeGraph));
//struct ncclTopoGraph collNetGraph;
collNetGraph.id = 2;
collNetGraph.pattern = NCCL_TOPO_PATTERN_TREE;
collNetGraph.collNet = 1;
collNetGraph.minChannels = collNetGraph.maxChannels = ringGraph.nChannels;
NCCLCHECK(ncclTopoCompute(comm->topo, &collNetGraph));
NCCLCHECK(ncclTopoPrintGraph(comm->topo, &collNetGraph));
bool allXgmi = true, hasPeerAccess = true;
// Check that all the GPUs have peer access to one another and are XGMI connected
for (int i = 0; i < nranks && hasPeerAccess; i++) {
int cudaDev1 = comm->peerInfo[i].cudaDev;
for (int j = 0; j < nranks; j++) {
if (i == j) continue;
int cudaDev2 = comm->peerInfo[j].cudaDev;
int p2p;
if (hipDeviceCanAccessPeer(&p2p, cudaDev1, cudaDev2) != hipSuccess || !p2p)
{
hasPeerAccess = false;
break;
}
bool isXGMI;
// Limit to single intermediate GPU for enabling clique
NCCLCHECK(ncclTopoGetLinkType(comm->topo, i, j, &isXGMI, 1));
allXgmi &= isXGMI;
}
}
if (comm->rank == ncclParamGraphDumpFileRank()) {
struct ncclTopoGraph* graphs[3] = { &ringGraph, &treeGraph, &collNetGraph };
NCCLCHECK(ncclTopoDumpGraphs(comm->topo, 3, graphs));
}
// Determine local CollNet support before all-gather
if (collNetSupport(comm)) {
char *collNetEnable = getenv("NCCL_COLLNET_ENABLE");
if (collNetEnable != NULL) {
INFO(NCCL_ALL, "NCCL_COLLNET_ENABLE set by environment to %s.", collNetEnable);
if (strcmp(collNetEnable, "1") == 0) {
comm->collNetSupport = 1;
}
}
}
if (comm->collNetSupport == 1 && collNetGraph.nChannels <= 0) comm->collNetSupport = 0;
if ((comm->topo->type & RCCL_TOPO_4P2H_ROME) && (comm->topo->type & RCCL_TOPO_GDR_ALL)) {
if (rcclParamP2pNetDisable() == 0) {
if (!(comm->topo->type & RCCL_TOPO_FORCE_INTRA)) comm->p2pNet = 1;
INFO(NCCL_INIT, "RCCL enabled same node P2P over network");
}
else
INFO(NCCL_INIT, "RCCL force disabled same node P2P over network");
}
// AllGather3 - begin
#if 0
struct ncclGraphInfo {
int pattern;
int nChannels;
int sameChannels;
float speedIntra;
float speedInter;
int typeIntra;
int typeInter;
};
struct {
int netDev;
int collNetSupport;
int nc;
struct ncclGraphInfo tree;
struct ncclGraphInfo ring;
struct ncclGraphInfo collNet;
struct ncclTopoRanks topoRanks;
bool pivotA2AEnabled;
} *allGather3Data;
NCCLCHECK(ncclCalloc(&allGather3Data, nranks));
#endif
int idx;
NCCLCHECK(ncclTopoIdToIndex(comm->topo, GPU, comm->busId, &idx));
allGather3Data[rank].nc = 2;
if (comm->topo->nodes[GPU].count == comm->topo->nRanks && comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 906 && allXgmi)
allGather3Data[rank].nc = 4;
if (comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 908)
allGather3Data[rank].nc = std::max(4/ringGraph.nChannels, 2);
if (comm->topo->nodes[GPU].count == comm->topo->nRanks && (comm->topo->type & RCCL_TOPO_CR8G))
allGather3Data[rank].nc = 4;
if (comm->topo->nodes[GPU].count == comm->topo->nRanks && comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 910)
allGather3Data[rank].nc = 4;
if (comm->topo->nodes[GPU].nodes[idx].gpu.gcn == 910)
allGather3Data[rank].nc = std::max(allGather3Data[rank].nc, 4/ringGraph.nChannels);
if (ringGraph.nChannels > MAXCHANNELS/2)
allGather3Data[rank].nc = 1;
NCCLCHECK(ncclTopoGetLocalNet(comm->topo, rank, &allGather3Data[rank].netDev));
allGather3Data[rank].tree.pattern = treeGraph.pattern;
allGather3Data[rank].tree.nChannels = treeGraph.nChannels;
allGather3Data[rank].tree.sameChannels = treeGraph.sameChannels;
allGather3Data[rank].tree.speedIntra = treeGraph.speedIntra;
allGather3Data[rank].tree.speedInter = treeGraph.speedInter;
allGather3Data[rank].tree.typeIntra = treeGraph.typeIntra;
allGather3Data[rank].tree.typeInter = treeGraph.typeInter;
allGather3Data[rank].ring.pattern = ringGraph.pattern;
allGather3Data[rank].ring.nChannels = ringGraph.nChannels;
allGather3Data[rank].ring.sameChannels = ringGraph.sameChannels;
allGather3Data[rank].ring.speedIntra = ringGraph.speedIntra;
allGather3Data[rank].ring.speedInter = ringGraph.speedInter;
allGather3Data[rank].ring.typeIntra = ringGraph.typeIntra;
allGather3Data[rank].ring.typeInter = ringGraph.typeInter;
allGather3Data[rank].collNet.pattern = collNetGraph.pattern;
allGather3Data[rank].collNet.nChannels = collNetGraph.nChannels;
allGather3Data[rank].collNet.sameChannels = collNetGraph.sameChannels;
allGather3Data[rank].collNet.speedIntra = collNetGraph.speedIntra;
allGather3Data[rank].collNet.speedInter = collNetGraph.speedInter;
allGather3Data[rank].collNet.typeIntra = collNetGraph.typeIntra;
allGather3Data[rank].collNet.typeInter = collNetGraph.typeInter;
allGather3Data[rank].collNetSupport = comm->collNetSupport;
allGather3Data[rank].pivotA2AEnabled = comm->topo->pivotA2AEnabled && rcclParamPivotAlltoallEnable();
comm->nChannels = (comm->topo->nodes[GPU].count != comm->topo->nRanks && comm->topo->nodes[NET].count)
? std::min(treeGraph.nChannels, ringGraph.nChannels) : ringGraph.nChannels;
NCCLCHECK(ncclTopoPreset(comm, &treeGraph, &ringGraph, &allGather3Data[rank].topoRanks));
return ncclSuccess;
}
ncclResult_t initTransportsRank_3(struct ncclComm* comm, struct allGather3Data_t *allGather3Data,
struct ncclTopoGraph& treeGraph, struct ncclTopoGraph& ringGraph, struct ncclTopoGraph& collNetGraph) {
int rank = comm->rank;
int nranks = comm->nRanks;
ncclResult_t ret;
//NCCLCHECK(bootstrapAllGather(comm->bootstrap, allGather3Data, sizeof(*allGather3Data)));
// Determine nNodes, firstRanks, ...
int *nodesFirstRank, *nodesTreePatterns;
NCCLCHECK(ncclCalloc(&nodesFirstRank, nranks));
NCCLCHECK(ncclCalloc(&nodesTreePatterns, nranks));
NCCLCHECK(ncclCalloc(&comm->rankToNode, comm->nRanks));
for (int r=0; r<nranks; r++) {
int node;
int firstRank = allGather3Data[r].topoRanks.ringRecv[0];
for (node=0; node<comm->nNodes && nodesFirstRank[node] != firstRank; node++);
if (node == comm->nNodes) {
comm->nNodes++;
nodesFirstRank[node] = firstRank;
// Record tree pattern of each node as they can be different depending on sm arch
nodesTreePatterns[node] = allGather3Data[r].tree.pattern;
}
comm->rankToNode[r] = node;
}
// Now that we know nNodes, alloc nodeRanks and compute localRanks for each node
NCCLCHECK(ncclCalloc(&comm->nodeRanks, comm->nNodes));
NCCLCHECK(ncclCalloc(&comm->rankToLocalRank, comm->nRanks));
for (int r=0; r<comm->nRanks; r++) {
int node = comm->rankToNode[r];
comm->rankToLocalRank[r] = comm->nodeRanks[node].localRanks;
comm->nodeRanks[node].localRanks++;
}
// Allocate ranks arrays for each node
for (int n=0; n<comm->nNodes; n++) {
NCCLCHECK(ncclCalloc(&comm->nodeRanks[n].localRankToRank, comm->nodeRanks[n].localRanks));
comm->maxLocalRanks = std::max(comm->maxLocalRanks, comm->nodeRanks[n].localRanks);
comm->nodeRanks[n].localRanks = 0;
}
// And fill the ranks arrays
for (int r=0; r<comm->nRanks; r++) {
int node = comm->rankToNode[r];
comm->nodeRanks[node].localRankToRank[comm->nodeRanks[node].localRanks++] = r;
}
comm->node = comm->rankToNode[rank];
comm->localRankToRank = comm->nodeRanks[comm->node].localRankToRank;
comm->localRank = comm->rankToLocalRank[rank];
comm->localRanks = comm->nodeRanks[comm->node].localRanks;
TRACE(NCCL_INIT,"hostHash[%d] %lx localRank %d localRanks %d localRank0 %d",
rank, comm->peerInfo[rank].hostHash, comm->localRank, comm->localRanks, comm->localRankToRank[0]);
if (comm->localRank == -1 || comm->localRankToRank[0] == -1 || comm->localRanks == 0) {
WARN("Failed to determine local ranks rank %d hostHash %lx pidHash %lx localRank %d localRanks %d localRank0 %d",
rank, comm->peerInfo[rank].hostHash, comm->peerInfo[rank].pidHash,
comm->localRank, comm->localRanks, comm->localRankToRank[0]);
return ncclInternalError;
}
int nChannelsOrig = comm->nChannels;
struct ncclTopoRanks** allTopoRanks;
NCCLCHECK(ncclCalloc(&allTopoRanks, comm->nRanks));
int nc = allGather3Data[0].nc;
for (int i=0; i<nranks; i++) {
comm->peerInfo[i].netDev = allGather3Data[i].netDev;
allTopoRanks[i] = &allGather3Data[i].topoRanks;
nc = std::min(allGather3Data[i].nc, nc);
// Make sure we align all ranks so that the tuning is consistent across ranks
treeGraph.nChannels = std::min(allGather3Data[i].tree.nChannels, treeGraph.nChannels);
treeGraph.sameChannels = std::min(allGather3Data[i].tree.sameChannels, treeGraph.sameChannels);
treeGraph.speedIntra = std::min(allGather3Data[i].tree.speedIntra, treeGraph.speedIntra);
treeGraph.speedInter = std::min(allGather3Data[i].tree.speedInter, treeGraph.speedInter);
treeGraph.typeIntra = std::max(allGather3Data[i].tree.typeIntra, treeGraph.typeIntra);
treeGraph.typeInter = std::max(allGather3Data[i].tree.typeInter, treeGraph.typeInter);
ringGraph.nChannels = std::min(allGather3Data[i].ring.nChannels, ringGraph.nChannels);
ringGraph.sameChannels = std::min(allGather3Data[i].ring.sameChannels, ringGraph.sameChannels);
ringGraph.speedIntra = std::min(allGather3Data[i].ring.speedIntra, ringGraph.speedIntra);
ringGraph.speedInter = std::min(allGather3Data[i].ring.speedInter, ringGraph.speedInter);
ringGraph.typeIntra = std::max(allGather3Data[i].ring.typeIntra, ringGraph.typeIntra);
ringGraph.typeInter = std::max(allGather3Data[i].ring.typeInter, ringGraph.typeInter);
collNetGraph.nChannels = std::min(allGather3Data[i].collNet.nChannels, collNetGraph.nChannels);
collNetGraph.sameChannels = std::min(allGather3Data[i].collNet.sameChannels, collNetGraph.sameChannels);
collNetGraph.speedIntra = std::min(allGather3Data[i].collNet.speedIntra, collNetGraph.speedIntra);
collNetGraph.speedInter = std::min(allGather3Data[i].collNet.speedInter, collNetGraph.speedInter);
collNetGraph.typeIntra = std::max(allGather3Data[i].collNet.typeIntra, collNetGraph.typeIntra);
collNetGraph.typeInter = std::max(allGather3Data[i].collNet.typeInter, collNetGraph.typeInter);
comm->collNetSupport = std::min(allGather3Data[i].collNetSupport, comm->collNetSupport);
comm->topo->pivotA2AEnabled = comm->topo->pivotA2AEnabled && allGather3Data[i].pivotA2AEnabled;
}
comm->nChannels = treeGraph.nChannels = ringGraph.nChannels =
(comm->topo->nodes[GPU].count != comm->topo->nRanks && comm->topo->nodes[NET].count)
? std::min(treeGraph.nChannels, ringGraph.nChannels) : ringGraph.nChannels;
if (comm->nChannels < nChannelsOrig) {
// We started duplicating channels during Preset(), so we need to move the
// duplicated channels since we have removed some.
for (int i=0; i<comm->nChannels; i++) memcpy(comm->channels+comm->nChannels+i, comm->channels+nChannelsOrig+i, sizeof(struct ncclChannel));
}
// Determine CollNet support after all-gather now that we know nNodes and each node localRanks
if (comm->collNetSupport == 1) {
int collNetNodeThreshold = ncclParamCollNetNodeThreshold();
if (comm->nNodes < collNetNodeThreshold) {
INFO(NCCL_INIT, "Communicator has %d nodes which is less than CollNet node threshold %d, disabling CollNet", comm->nNodes, collNetNodeThreshold);
comm->collNetSupport = 0;
}
for (int n=0; n<comm->nNodes; n++) {
if (comm->nodeRanks[n].localRanks > NCCL_MAX_DIRECT_ARITY+1) {
WARN("CollNet currently only supports up to %d GPUs per node, disabling CollNet", NCCL_MAX_DIRECT_ARITY+1);
comm->collNetSupport = 0;
break;
}
}
}
int *rings;
NCCLCHECK(ncclCalloc(&rings, nranks*MAXCHANNELS));
NCCLCHECK(ncclTopoPostset(comm, nodesFirstRank, nodesTreePatterns, allTopoRanks, rings, &collNetGraph, nc));
if (comm->topo->pivotA2ANumBiRings == 3) NCCLCHECK(ncclTreeBasePostset(comm, &treeGraph));
free(allTopoRanks);
free(nodesTreePatterns);
free(nodesFirstRank);
//free(allGather3Data);
// AllGather3 - end
TRACE(NCCL_INIT, "rank %d nranks %d - BUILT %d TREES/RINGS", rank, nranks, comm->nChannels);
char line[1024];
line[0]='\0';
for (int c=0; c<comm->nChannels; c++) {
struct ncclTree* tree = &comm->channels[c].tree;
snprintf(line+strlen(line), 1023-strlen(line), " [%d] %d/%d/%d->%d->%d",
c, tree->down[0], tree->down[1], tree->down[2], rank, tree->up);
INFO(NCCL_GRAPH, "Ring %d : %d -> %d -> %d", c, comm->channels[c].ring.prev, comm->rank, comm->channels[c].ring.next);
}
line[1023] = '\0';
INFO(NCCL_INIT, "Trees%s", line);
//NCCLCHECK(computeBuffSizes(comm));
// Connect with prev/next for each ring
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channel = comm->channels+c;
NCCLCHECKGOTO(setupChannel(comm, c, rank, nranks, rings+c*nranks), ret, affinity_restore);
if (comm->nRanks == 1) continue;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->ring.prev, 1, &channel->ring.next, 0), ret, affinity_restore);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &ringGraph, 0), ret, affinity_restore);
if (ringGraph.nIntraChannels && rcclParamP2pNetDisable() == 0) {
comm->useIntraNet = 1;
// Connect NET for intranode use
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channel = comm->channels+c;
if (comm->nRanks == 1) continue;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->ring.prev, 1, &channel->ring.next, NCCL_CONN_IDX_P2P_NET), ret, affinity_restore);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &ringGraph, NCCL_CONN_IDX_P2P_NET), ret, affinity_restore);
}
free(rings);
INFO(NCCL_INIT, "Connected all rings");
// Connect Trees
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channel = comm->channels+c;
if (comm->nRanks == 1) continue;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_TREE_ARITY, channel->tree.down, 1, &channel->tree.up, 0), ret, affinity_restore);
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->tree.up, NCCL_MAX_TREE_ARITY, channel->tree.down, 0), ret, affinity_restore);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &treeGraph, 0), ret, affinity_restore);
INFO(NCCL_INIT, "Connected all trees");
// Check if we can setup CollNet
if (comm->collNetSupport > 0) {
int collNetSetupFail = 0;
int highestTypes[NCCL_MAX_LOCAL_RANKS] = {TRANSPORT_P2P};
// Find all head ranks
int nHeads = collNetGraph.nChannels;
int *heads;
NCCLCHECK(ncclCalloc(&heads, nHeads));
// Head GPU index is always 0
for (int c=0; c<nHeads; c++) {
heads[c] = collNetGraph.intra[c*comm->localRanks+0];
}
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channel = comm->channels+c;
for (int h=0; h<nHeads; h++) {
const int head = heads[h];
collNetSetupFail = ncclTransportCollNetSetup(comm, &collNetGraph, channel, head, head, h, collNetRecv);
collNetSetupFail += ncclTransportCollNetSetup(comm, &collNetGraph, channel, head, head, h, collNetSend);
}
// Verify CollNet setup across ranks after trying the first channel
if (c == 0) {
NCCLCHECKGOTO(ncclTransportCollNetCheck(comm, collNetSetupFail), ret, collnet_cleanup);
}
}
// Verify CollNet setup across ranks after trying all channels
NCCLCHECKGOTO(ncclTransportCollNetCheck(comm, collNetSetupFail), ret, collnet_cleanup);
TRACE(NCCL_INIT, "rank %d Connected inter-node CollNet", rank);
// Connect intra-node CollNet
int highestTransportType0, highestTransportType1;
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channelRecv = comm->channels+c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_DIRECT_ARITY, channelRecv->collTree.up, NCCL_MAX_DIRECT_ARITY, channelRecv->collTree.down, 0), ret, collnet_cleanup);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 0, &highestTransportType0), ret, collnet_cleanup);
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channelSend = comm->channels+c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_DIRECT_ARITY, channelSend->collTree.down, NCCL_MAX_DIRECT_ARITY, channelSend->collTree.up, 1), ret, collnet_cleanup);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 1, &highestTransportType1), ret, collnet_cleanup);
// Exchange highest intra-node transport type among ranks
// because we need to know whether all ranks can p2p each other to determine whether we can directly read/write registered user buffer
comm->intraHighestTransportType = highestTypes[comm->localRank] = highestTransportType0 > highestTransportType1 ? highestTransportType0 : highestTransportType1;
//NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, highestTypes, sizeof(int)));
for (int i=0; i<comm->localRanks; i++) {
if (highestTypes[i] > comm->intraHighestTransportType)
comm->intraHighestTransportType = highestTypes[i];
}
INFO(NCCL_INIT, "rank %d Connected CollNet comm %p nRanks %02d", rank, comm, comm->nRanks);
collnet_cleanup:
free(heads);
if (ret != ncclSuccess) {
NCCLCHECK(ncclTransportCollNetFree(comm));
comm->collNetSupport = 0;
ret = ncclSuccess;
}
}
TRACE(NCCL_INIT, "rank %d nranks %d - CONNECTED %d RINGS AND TREES", rank, nranks, comm->nChannels);
// Compute time models for algorithm and protocol combinations
do {
int myCompCap = comm->peerInfo[rank].cudaCompCap;
int minCompCap = myCompCap, maxCompCap = myCompCap;
for (int i = 0; i < nranks; i++) {
minCompCap = std::min(comm->peerInfo[i].cudaCompCap, minCompCap);
maxCompCap = std::max(comm->peerInfo[i].cudaCompCap, maxCompCap);
}
NCCLCHECK(ncclTopoTuneModel(comm, minCompCap, maxCompCap, &treeGraph, &ringGraph, &collNetGraph));
} while(0);
// Compute nChannels per peer for p2p
NCCLCHECK(ncclTopoComputeP2pChannels(comm));
#if 0
do { // Setup p2p structures in comm->tasks
struct ncclTasks* tasks = &comm->tasks;
int nRanks = comm->nRanks;
int node = comm->node;
int nNodes = comm->nNodes;
struct ncclNodeRanks *nodeRanks = comm->nodeRanks;
int localRank = comm->localRank;
tasks->peers = ncclMemoryStackAlloc<ncclTasks::Peer>(&comm->memPermanent, nRanks);
tasks->p2pSendOrder = ncclMemoryStackAlloc<int>(&comm->memPermanent, nRanks);
tasks->p2pRecvOrder = ncclMemoryStackAlloc<int>(&comm->memPermanent, nRanks);
int s=0, r=0;
// schedule delta 0, +1, -1, +2, -2, ...
// also make sure we don't do 0 twice, nor +n/2 and -n/2 if n is even.
for (int d=0; d <= nNodes/4; d++) {
int deltas[4] = { d, (nNodes-d)%nNodes, nNodes/2-d, (nNodes-(nNodes/2-d))%nNodes };
int index = 0;
int delta = deltas[index];
sched_delta:
int recvNode = (node+nNodes-delta)%nNodes;
int sendNode = (node+delta)%nNodes;
int steps = comm->maxLocalRanks;
for (int step=0; step < steps; step++) {
int recvIndex = (localRank-step+steps)%steps;
if (recvIndex < nodeRanks[recvNode].localRanks) {
tasks->p2pRecvOrder[r] = nodeRanks[recvNode].localRankToRank[recvIndex];
r++;
}
int sendIndex = (localRank+step)%steps;
if (sendIndex < nodeRanks[sendNode].localRanks) {
tasks->p2pSendOrder[s] = nodeRanks[sendNode].localRankToRank[sendIndex];
s++;
}
}
index++;
if (index == 1 && deltas[1] == deltas[0]) index++;
if (index == 2 && deltas[2] == deltas[0]) index++;
if (index == 3 && deltas[3] == deltas[2]) index++;
if (index == 3 && deltas[3] == deltas[1]) index++;
if (index < 4) {
delta = deltas[index];
goto sched_delta;
}
}
assert(s == nRanks && r == nRanks);
} while (0);
if (ncclParamNvbPreconnect()) {
// Connect p2p when using NVB path
int nvbNpeers;
int* nvbPeers;
NCCLCHECK(ncclTopoGetNvbGpus(comm->topo, comm->rank, &nvbNpeers, &nvbPeers));
for (int r=0; r<nvbNpeers; r++) {
int peer = nvbPeers[r];
int channelId;
for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
NCCLCHECK(ncclChannelCompute(comm, peer, c, ncclFuncSend, &channelId));
if (comm->channels[channelId].peers[peer].send[1].connected == 0) {
comm->connectSend[peer] |= (1<<channelId);
}
}
for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
NCCLCHECK(ncclChannelCompute(comm, peer, c, ncclFuncRecv, &channelId));
if (comm->channels[channelId].peers[peer].recv[1].connected == 0) {
comm->connectRecv[peer] |= (1<<channelId);
}
}
}
NCCLCHECK(ncclTransportP2pSetup(comm, NULL, 1));
free(nvbPeers);
}
#endif
// Connect to local net proxy
struct ncclProxyConnector proxyConn;
//NCCLCHECK(ncclProxyConnect(comm, TRANSPORT_NET, 1, comm->rank, &proxyConn));
//NCCLCHECK(ncclProxyCall(&proxyConn, ncclProxyMsgSharedInit, &comm->p2pnChannels, sizeof(int), NULL, 0));
// Then to remote ones when using PXN
if (ncclPxnDisable(comm) == 0) {
int nranks;
int* pxnPeers;
NCCLCHECK(ncclTopoGetPxnRanks(comm, &pxnPeers, &nranks));
for (int r=0; r<nranks; r++) {
//NCCLCHECK(ncclProxyConnect(comm, TRANSPORT_NET, 1, pxnPeers[r], &proxyConn));
// NCCLCHECK(ncclProxyCall(&proxyConn, ncclProxyMsgSharedInit, &comm->p2pnChannels, sizeof(int), NULL, 0));
}
free(pxnPeers);
}
do {
// Compute intra-process ranks
int intraProcRank0 = -1, intraProcRank = -1, intraProcRanks = 0;
for (int i = 0; i < nranks; i++) {
if ((comm->peerInfo[i].hostHash == comm->peerInfo[rank].hostHash)
&& (comm->peerInfo[i].pidHash == comm->peerInfo[rank].pidHash)) {
// Rank is in same process
if (intraProcRanks == 0) intraProcRank0 = i;
if (i == rank) intraProcRank = intraProcRanks;
intraProcRanks++;
if (intraProcRank0 == rank && rank != i) {
comm->peerInfo[i].comm->intraNext = comm->intraNext;
comm->intraNext = comm->peerInfo[i].comm;
}
}
}
TRACE(NCCL_INIT,"pidHash[%d] %lx intraProcRank %d intraProcRanks %d intraProcRank0 %d",
rank, comm->peerInfo[rank].pidHash, intraProcRank, intraProcRanks, intraProcRank0);
if (intraProcRank == -1 || intraProcRank0 == -1 || comm->peerInfo[intraProcRank0].comm == NULL) {
WARN("Failed to determine intra proc ranks rank %d hostHash %lx pidHash %lx intraProcRank %d intraProcRanks %d intraProcRank0 %d",
rank, comm->peerInfo[rank].hostHash, comm->peerInfo[rank].pidHash,
intraProcRank, intraProcRanks, intraProcRank0);
return ncclInternalError;
}
struct ncclComm* comm0 = comm->peerInfo[intraProcRank0].comm;
assert(intraProcRank==0 ? comm==comm0 : true);
comm->intraComm0 = comm0;
comm->intraRefs = intraProcRank==0 ? intraProcRanks : 0;
comm->intraRank = intraProcRank;
comm->intraRanks = intraProcRanks;
comm->intraBarrierPhase = 0;
comm->intraBarrierCounter = 0;
comm->intraBarrierGate = 0;
} while(0);
#if 0
if (comm->intraRank == 0) { // Load ncclParamLaunchMode
char* str = getenv("NCCL_LAUNCH_MODE");
enum ncclLaunchMode mode, modeOld;
if (str && strcasecmp(str, "GROUP") == 0) {
mode = ncclLaunchModeGroup;
} else {
mode = ncclLaunchModeParallel;
}
// In theory we could be racing with other communicators not associated with
// this one if the user is connecting to multiple ncclUniqueId's concurrently.
modeOld = __atomic_exchange_n(&ncclParamLaunchMode, mode, __ATOMIC_RELAXED);
if (modeOld == ncclLaunchModeInvalid && str && str[0]!='\0') {
INFO(NCCL_ENV, "NCCL_LAUNCH_MODE set by environment to %s", mode == ncclLaunchModeParallel ? "PARALLEL" : "GROUP");
}
}
/* Local intra-node barrier */
//NCCLCHECK(bootstrapBarrier(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, comm->localRankToRank[0]));
// Unlink proxy shm to make sure it will be properly cleaned up.
NCCLCHECK(ncclProxyShmUnlink(comm));
#endif
// We should have allocated all buffers, collective fifos, ... we can
// restore the affinity.
affinity_restore:
//if (CPU_COUNT(&comm->cpuAffinity)) sched_setaffinity(0, sizeof(cpu_set_t), &affinitySave);
if (ret != ncclSuccess) return ret;
TRACE(NCCL_INIT, "rank %d nranks %d - DONE", rank, nranks);
return ncclSuccess;
}
ncclResult_t rocm_smi_init() {
return ncclSuccess;
}
ncclResult_t rocm_smi_getDeviceIndexByPciBusId(const char* pciBusId, uint32_t* deviceIndex) {
return ncclSuccess;
}
ncclResult_t rocm_smi_getLinkInfo(int srcDev, int dstDev, RSMI_IO_LINK_TYPE* rsmi_type, int *hops, int *bw) {
return ncclSuccess;
}
int ncclNetVersion(struct ncclComm* comm) {
return 4;
}
|