1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
// -*- mode: C++; c-indent-level: 4; c-basic-offset: 4; indent-tabs-mode: nil; -*-
//
// Matrix.h: Rcpp R/C++ interface class library -- matrices
//
// Copyright (C) 2010 - 2014 Dirk Eddelbuettel and Romain Francois
//
// This file is part of Rcpp.
//
// Rcpp is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Rcpp is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
#ifndef Rcpp__vector__Matrix_h
#define Rcpp__vector__Matrix_h
namespace Rcpp{
template <int RTYPE, template <class> class StoragePolicy = PreserveStorage >
class Matrix : public Vector<RTYPE, StoragePolicy>, public MatrixBase<RTYPE, true, Matrix<RTYPE,StoragePolicy> > {
int nrows ;
public:
struct r_type : traits::integral_constant<int,RTYPE>{} ;
struct can_have_na : traits::true_type{} ;
typedef MatrixRow<RTYPE> Row ;
typedef MatrixColumn<RTYPE> Column ;
typedef SubMatrix<RTYPE> Sub ;
typedef StoragePolicy<Matrix> Storage ;
typedef Vector<RTYPE, StoragePolicy> VECTOR ;
typedef typename VECTOR::iterator iterator ;
typedef typename VECTOR::const_iterator const_iterator ;
typedef typename VECTOR::converter_type converter_type ;
typedef typename VECTOR::stored_type stored_type ;
typedef typename VECTOR::Proxy Proxy ;
typedef typename VECTOR::const_Proxy const_Proxy ;
Matrix() : VECTOR() {}
Matrix(SEXP x) : VECTOR( r_cast<RTYPE>( x ) ), nrows( VECTOR::dims()[0] ) {}
Matrix( const Dimension& dims) : VECTOR( Rf_allocMatrix( RTYPE, dims[0], dims[1] ) ), nrows(dims[0]) {
if( dims.size() != 2 ) throw not_compatible("not a matrix") ;
VECTOR::init() ;
}
Matrix( const int& nrows_, const int& ncols) : VECTOR( Dimension( nrows_, ncols ) ),
nrows(nrows_)
{}
template <typename Iterator>
Matrix( const int& nrows_, const int& ncols, Iterator start ) :
VECTOR( start, start + (nrows_*ncols) ),
nrows(nrows_)
{
VECTOR::attr( "dim" ) = Dimension( nrows, ncols ) ;
}
Matrix( const int& n) : VECTOR( Dimension( n, n ) ), nrows(n) {}
Matrix( const Matrix& other) : VECTOR( other.get__() ), nrows(other.nrows) {}
template <bool NA, typename MAT>
Matrix( const MatrixBase<RTYPE,NA,MAT>& other ) : VECTOR( Rf_allocMatrix( RTYPE, other.nrow(), other.ncol() ) ), nrows(other.nrow()) {
import_matrix_expression<NA,MAT>( other, nrows, ncol() ) ;
}
Matrix( const SubMatrix<RTYPE>& ) ;
Matrix& operator=(const Matrix& other) {
SEXP x = other.get__() ;
if( ! ::Rf_isMatrix(x) ) not_compatible("not a matrix") ;
VECTOR::set__( x ) ;
nrows = other.nrows ;
return *this ;
}
Matrix& operator=( const SubMatrix<RTYPE>& ) ;
explicit Matrix( const no_init_matrix& obj) {
Storage::set__( Rf_allocMatrix( RTYPE, obj.nrow(), obj.ncol() ) );
}
inline int ncol() const {
return VECTOR::dims()[1];
}
inline int nrow() const {
return nrows ;
}
inline int cols() const {
return VECTOR::dims()[1];
}
inline int rows() const {
return nrows ;
}
inline Row row( int i ){ return Row( *this, i ) ; }
inline Column column( int i ){ return Column(*this, i ) ; }
inline const_iterator begin() const{ return VECTOR::begin() ; }
inline const_iterator end() const{ return VECTOR::end() ; }
inline iterator begin() { return VECTOR::begin() ; }
inline iterator end() { return VECTOR::end() ; }
template <typename U>
void fill_diag( const U& u) {
fill_diag__dispatch( typename traits::is_trivial<RTYPE>::type(), u ) ;
}
template <typename U> static Matrix diag( int size, const U& diag_value ) {
Matrix res(size,size) ;
res.fill_diag( diag_value ) ;
return res ;
}
inline Proxy operator[]( int i ) {
return static_cast< Vector<RTYPE>* >( this )->operator[]( i ) ;
}
inline const_Proxy operator[]( int i ) const {
return static_cast< const Vector<RTYPE>* >( this )->operator[]( i ) ;
}
inline Proxy operator()( const size_t& i, const size_t& j) {
return static_cast< Vector<RTYPE>* >( this )->operator[]( offset( i, j ) ) ;
}
inline const_Proxy operator()( const size_t& i, const size_t& j) const {
return static_cast< const Vector<RTYPE>* >( this )->operator[]( offset( i, j ) ) ;
}
inline Row operator()( int i, internal::NamedPlaceHolder ) {
return Row( *this, i ) ;
}
inline Column operator()( internal::NamedPlaceHolder, int i ) {
return Column( *this, i ) ;
}
inline Column operator()( internal::NamedPlaceHolder, int i ) const {
return Column( *this, i ) ;
}
inline Sub operator()( const Range& row_range, const Range& col_range) {
return Sub( const_cast<Matrix&>(*this), row_range, col_range ) ;
}
inline Sub operator()( internal::NamedPlaceHolder, const Range& col_range) {
return Sub( const_cast<Matrix&>(*this), Range(0,nrow()-1) , col_range ) ;
}
inline Sub operator()( const Range& row_range, internal::NamedPlaceHolder ) {
return Sub( const_cast<Matrix&>(*this), row_range, Range(0,ncol()-1) ) ;
}
private:
inline int offset( int i, int j) const { return i + nrows * j ; }
template <typename U>
void fill_diag__dispatch( traits::false_type, const U& u) {
Shield<SEXP> elem( converter_type::get( u ) ) ;
int n = Matrix::ncol() ;
int offset = n +1 ;
iterator it( VECTOR::begin()) ;
for( int i=0; i<n; i++){
*it = ::Rf_duplicate( elem );
it += offset;
}
}
template <typename U>
void fill_diag__dispatch( traits::true_type, const U& u) {
stored_type elem = converter_type::get( u ) ;
int n = Matrix::ncol() ;
int offset = n + 1 ;
iterator it( VECTOR::begin()) ;
for( int i=0; i<n; i++){
*it = elem ;
it += offset;
}
}
template <bool NA, typename MAT>
void import_matrix_expression( const MatrixBase<RTYPE,NA,MAT>& other, int nr, int nc ) {
iterator start = VECTOR::begin() ;
for( int j=0; j<nc; j++){
for( int i=0; i<nr; i++, ++start){
*start = other(i,j) ;
}
}
}
};
inline internal::DimNameProxy rownames(SEXP x) {
return internal::DimNameProxy(x, 0);
}
inline internal::DimNameProxy colnames(SEXP x) {
return internal::DimNameProxy(x, 1);
}
}
#endif
|