File: timeRNGs.R

package info (click to toggle)
rcpp 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,344 kB
  • sloc: ansic: 43,817; cpp: 39,947; sh: 51; makefile: 2
file content (169 lines) | stat: -rw-r--r-- 4,004 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

suppressMessages(library(Rcpp))
suppressMessages(library(inline))
suppressMessages(library(rbenchmark))

## NOTE: This is the old way to compile Rcpp code inline.
## The code here has left as a historical artifact and tribute to the old way.
## Please use the code under the "new" inline compilation section.

rcppGamma_old <- cxxfunction(signature(xs="numeric"), plugin="Rcpp", body='
  NumericVector x(xs);
  int n   = x.size();

  // Initialize Random number generator
  RNGScope scope;

  const double y = 1.234;
  for (int i=0; i<n; i++) {
    x[i] = ::Rf_rgamma(3.0, 1.0/(y*y+4));
  }

  // Return to R
  return x;
')


gslGamma_old <- cxxfunction(signature(xs="numeric"), plugin="RcppGSL",
                        include='#include <gsl/gsl_rng.h>
                                 #include <gsl/gsl_randist.h>',
                        body='
  NumericVector x(xs);
  int n   = x.size();

  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  const double y = 1.234;
  for (int i=0; i<n; i++) {
    x[i] = gsl_ran_gamma(r,3.0,1.0/(y*y+4));
  }
  gsl_rng_free(r);

  // Return to R
  return x;
')


rcppNormal_old <- cxxfunction(signature(xs="numeric"), plugin="Rcpp", body='
  NumericVector x(xs);
  int n   = x.size();

  // Initialize Random number generator
  RNGScope scope;

  const double y = 1.234;
  for (int i=0; i<n; i++) {
    x[i] = ::Rf_rnorm(1.0/(y+1),1.0/sqrt(2*y+2));
  }

  // Return to R
  return x;
')


gslNormal_old <- cxxfunction(signature(xs="numeric"), plugin="RcppGSL",
                        include='#include <gsl/gsl_rng.h>
                                 #include <gsl/gsl_randist.h>',
                        body='
  NumericVector x(xs);
  int n   = x.size();

  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  const double y = 1.234;
  for (int i=0; i<n; i++) {
    x[i] = 1.0/(y+1)+gsl_ran_gaussian(r,1.0/sqrt(2*y+2));
  }
  gsl_rng_free(r);

  // Return to R
  return x;
')


## NOTE: Within this section, the new way to compile Rcpp code inline has been
## written. Please use the code next as a template for your own project.

cppFunction('
NumericVector rcppGamma(NumericVector x){
    int n   = x.size();
    
    const double y = 1.234;
    for (int i=0; i<n; i++) {
        x[i] = R::rgamma(3.0, 1.0/(y*y+4));
    }
    
    // Return to R
    return x;
}')

## This approach is a bit sloppy. Generally, you will want to use 
## sourceCpp() if there are additional includes that are required.
cppFunction('
NumericVector gslGamma(NumericVector x){
    int n   = x.size();
    
    gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
    const double y = 1.234;
    for (int i=0; i<n; i++) {
        x[i] = gsl_ran_gamma(r,3.0,1.0/(y*y+4));
    }
    gsl_rng_free(r);
    
    // Return to R
    return x;
}', includes = '#include <gsl/gsl_rng.h>
                #include <gsl/gsl_randist.h>',
    depends = "RcppGSL")


cppFunction('
NumericVector rcppNormal(NumericVector x){
    int n   = x.size();
    
    const double y = 1.234;
    for (int i=0; i<n; i++) {
        x[i] = R::rnorm(1.0/(y+1),1.0/sqrt(2*y+2));
    }
    
    // Return to R
    return x;
}')


## Here we demonstrate the use of sourceCpp() to show the continuity 
## of the code artifact.

sourceCpp(code = '
#include <RcppGSL.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

using namespace Rcpp;

// [[Rcpp::depends("RcppGSL")]]

// [[Rcpp::export]]
NumericVector gslNormal(NumericVector x){
    int n   = x.size();
    
    gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
    const double y = 1.234;
    for (int i=0; i<n; i++) {
        x[i] = 1.0/(y+1)+gsl_ran_gaussian(r,1.0/sqrt(2*y+2));
    }
    gsl_rng_free(r);
    
    // Return to R
    return x;
}')

x <- rep(NA, 1e6)
res <- benchmark(rcppGamma(x),
                 gslGamma(x),
                 rcppNormal(x),
                 gslNormal(x),
                 columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
                 order="relative",
                 replications=20)
print(res)