1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
// -*- mode: C++; c-indent-level: 4; c-basic-offset: 4; indent-tabs-mode: nil; -*-
//
// Matrix.h: Rcpp R/C++ interface class library -- matrices
//
// Copyright (C) 2010 - 2016 Dirk Eddelbuettel and Romain Francois
//
// This file is part of Rcpp.
//
// Rcpp is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Rcpp is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
#ifndef Rcpp__vector__Matrix_h
#define Rcpp__vector__Matrix_h
namespace Rcpp{
template <int RTYPE, template <class> class StoragePolicy = PreserveStorage >
class Matrix : public Vector<RTYPE, StoragePolicy>, public MatrixBase<RTYPE, true, Matrix<RTYPE,StoragePolicy> > {
int nrows ;
public:
using Vector<RTYPE, StoragePolicy>::size; // disambiguate diamond pattern for g++-6 and later
struct r_type : traits::integral_constant<int,RTYPE>{} ;
struct can_have_na : traits::true_type{} ;
typedef MatrixRow<RTYPE> Row ;
typedef ConstMatrixRow<RTYPE> ConstRow ;
typedef MatrixColumn<RTYPE> Column ;
typedef ConstMatrixColumn<RTYPE> ConstColumn ;
typedef SubMatrix<RTYPE> Sub ;
typedef StoragePolicy<Matrix> Storage ;
typedef Vector<RTYPE, StoragePolicy> VECTOR ;
typedef typename VECTOR::iterator iterator ;
typedef typename VECTOR::const_iterator const_iterator ;
typedef typename VECTOR::converter_type converter_type ;
typedef typename VECTOR::stored_type stored_type ;
typedef typename VECTOR::Proxy Proxy ;
typedef typename VECTOR::const_Proxy const_Proxy ;
Matrix() : VECTOR(Dimension(0, 0)), nrows(0) {}
Matrix(SEXP x) : VECTOR(x), nrows( VECTOR::dims()[0] ) {}
Matrix( const Dimension& dims) : VECTOR( Rf_allocMatrix( RTYPE, dims[0], dims[1] ) ), nrows(dims[0]) {
if( dims.size() != 2 ) throw not_a_matrix();
VECTOR::init() ;
}
Matrix( const int& nrows_, const int& ncols) : VECTOR( Dimension( nrows_, ncols ) ),
nrows(nrows_)
{}
template <typename Iterator>
Matrix( const int& nrows_, const int& ncols, Iterator start ) :
VECTOR( start, start + (static_cast<R_xlen_t>(nrows_)*ncols) ),
nrows(nrows_)
{
VECTOR::attr( "dim" ) = Dimension( nrows, ncols ) ;
}
Matrix( const int& n) : VECTOR( Dimension( n, n ) ), nrows(n) {}
Matrix( const Matrix& other) : VECTOR( other.get__() ), nrows(other.nrows) {}
template <bool NA, typename MAT>
Matrix( const MatrixBase<RTYPE,NA,MAT>& other ) : VECTOR( Rf_allocMatrix( RTYPE, other.nrow(), other.ncol() ) ), nrows(other.nrow()) {
import_matrix_expression<NA,MAT>( other, nrows, ncol() ) ;
}
Matrix( const SubMatrix<RTYPE>& ) ;
Matrix& operator=(const Matrix& other) {
SEXP x = other.get__() ;
if( ! ::Rf_isMatrix(x) ) throw not_a_matrix();
VECTOR::set__( x ) ;
nrows = other.nrows ;
return *this ;
}
Matrix& operator=( const SubMatrix<RTYPE>& ) ;
explicit Matrix( const no_init_matrix& obj) : VECTOR(Rf_allocMatrix(RTYPE, obj.nrow(), obj.ncol())), nrows(obj.nrow()) {}
inline int ncol() const {
return VECTOR::dims()[1];
}
inline int nrow() const {
return nrows ;
}
inline int cols() const {
return VECTOR::dims()[1];
}
inline int rows() const {
return nrows ;
}
inline Row row( int i ){ return Row( *this, i ) ; }
inline ConstRow row( int i ) const{ return ConstRow( *this, i ) ; }
inline Column column( int i ){ return Column(*this, i ) ; }
inline ConstColumn column( int i ) const{ return ConstColumn( *this, i ) ; }
inline const_iterator begin() const{ return VECTOR::begin() ; }
inline const_iterator end() const{ return VECTOR::end() ; }
inline const_iterator cbegin() const{ return VECTOR::begin() ; }
inline const_iterator cend() const{ return VECTOR::end() ; }
inline iterator begin() { return VECTOR::begin() ; }
inline iterator end() { return VECTOR::end() ; }
template <typename U>
void fill_diag( const U& u) {
fill_diag__dispatch( typename traits::is_trivial<RTYPE>::type(), u ) ;
}
template <typename U> static Matrix diag( int size, const U& diag_value ) {
Matrix res(size,size) ;
res.fill_diag( diag_value ) ;
return res ;
}
inline Proxy operator[]( R_xlen_t i ) {
return static_cast< Vector<RTYPE>* >( this )->operator[]( i ) ;
}
inline const_Proxy operator[]( R_xlen_t i ) const {
return static_cast< const Vector<RTYPE>* >( this )->operator[]( i ) ;
}
inline Proxy operator()( const size_t& i, const size_t& j) {
return static_cast< Vector<RTYPE>* >( this )->operator[]( offset( i, j ) ) ;
}
inline const_Proxy operator()( const size_t& i, const size_t& j) const {
return static_cast< const Vector<RTYPE>* >( this )->operator[]( offset( i, j ) ) ;
}
inline Proxy at( const size_t& i, const size_t& j) {
return static_cast< Vector<RTYPE>* >( this )->operator()( i, j ) ;
}
inline const_Proxy at( const size_t& i, const size_t& j) const {
return static_cast< const Vector<RTYPE>* >( this )->operator()( i, j ) ;
}
inline Row operator()( int i, internal::NamedPlaceHolder ) {
return Row( *this, i ) ;
}
inline ConstRow operator()( int i, internal::NamedPlaceHolder ) const {
return ConstRow( *this, i ) ;
}
inline Column operator()( internal::NamedPlaceHolder, int i ) {
return Column( *this, i ) ;
}
inline ConstColumn operator()( internal::NamedPlaceHolder, int i ) const {
return ConstColumn( *this, i ) ;
}
inline Sub operator()( const Range& row_range, const Range& col_range) {
return Sub( const_cast<Matrix&>(*this), row_range, col_range ) ;
}
inline Sub operator()( internal::NamedPlaceHolder, const Range& col_range) {
return Sub( const_cast<Matrix&>(*this), Range(0,nrow()-1) , col_range ) ;
}
inline Sub operator()( const Range& row_range, internal::NamedPlaceHolder ) {
return Sub( const_cast<Matrix&>(*this), row_range, Range(0,ncol()-1) ) ;
}
private:
inline R_xlen_t offset(const int i, const int j) const { return i + static_cast<R_xlen_t>(nrows) * j ; }
template <typename U>
void fill_diag__dispatch( traits::false_type, const U& u) {
Shield<SEXP> elem( converter_type::get( u ) );
R_xlen_t bounds = std::min(Matrix::nrow(), Matrix::ncol());
for (R_xlen_t i = 0; i < bounds; ++i) {
(*this)(i, i) = elem;
}
}
template <typename U>
void fill_diag__dispatch( traits::true_type, const U& u) {
stored_type elem = converter_type::get( u );
R_xlen_t bounds = std::min(Matrix::nrow(), Matrix::ncol());
for (R_xlen_t i = 0; i < bounds; ++i) {
(*this)(i, i) = elem;
}
}
template <bool NA, typename MAT>
void import_matrix_expression( const MatrixBase<RTYPE,NA,MAT>& other, int nr, int nc ) {
iterator start = VECTOR::begin() ;
for( int j=0; j<nc; j++){
for( int i=0; i<nr; i++, ++start){
*start = other(i,j) ;
}
}
}
};
inline internal::DimNameProxy rownames(SEXP x) {
return internal::DimNameProxy(x, 0);
}
inline internal::DimNameProxy colnames(SEXP x) {
return internal::DimNameProxy(x, 1);
}
template<template <class> class StoragePolicy >
inline std::ostream &operator<<(std::ostream & s, const Matrix<REALSXP, StoragePolicy> & rhs) {
typedef Matrix<REALSXP, StoragePolicy> MATRIX;
std::ios::fmtflags flags = s.flags();
s.unsetf(std::ios::floatfield);
std::streamsize precision = s.precision();
const int rows = rhs.rows();
for (int i = 0; i < rows; ++i) {
typename MATRIX::Row row = const_cast<MATRIX &>(rhs).row(i);
typename MATRIX::Row::iterator j = row.begin();
typename MATRIX::Row::iterator jend = row.end();
if (j != jend) {
s << std::showpoint << std::setw(precision + 1) << (*j);
j++;
for ( ; j != jend; j++) {
s << " " << std::showpoint << std::setw(precision + 1) << (*j);
}
}
s << std::endl;
}
s.flags(flags);
return s;
}
#ifndef RCPP_NO_SUGAR
#define RCPP_GENERATE_MATRIX_SCALAR_OPERATOR(__OPERATOR__) \
template <int RTYPE, template <class> class StoragePolicy, typename T > \
inline typename traits::enable_if< traits::is_convertible< typename traits::remove_const_and_reference< T >::type, \
typename Matrix<RTYPE, StoragePolicy>::stored_type >::value, Matrix<RTYPE, StoragePolicy> >::type \
operator __OPERATOR__ (const Matrix<RTYPE, StoragePolicy> &lhs, const T &rhs) { \
Vector<RTYPE, StoragePolicy> v = static_cast<const Vector<RTYPE, StoragePolicy> &>(lhs) __OPERATOR__ rhs; \
v.attr("dim") = Vector<INTSXP>::create(lhs.nrow(), lhs.ncol()); \
return as< Matrix<RTYPE, StoragePolicy> >(v); \
}
RCPP_GENERATE_MATRIX_SCALAR_OPERATOR(+)
RCPP_GENERATE_MATRIX_SCALAR_OPERATOR(-)
RCPP_GENERATE_MATRIX_SCALAR_OPERATOR(*)
RCPP_GENERATE_MATRIX_SCALAR_OPERATOR(/)
#undef RCPP_GENERATE_MATRIX_SCALAR_OPERATOR
#define RCPP_GENERATE_SCALAR_MATRIX_OPERATOR(__OPERATOR__) \
template <int RTYPE, template <class> class StoragePolicy, typename T > \
inline typename traits::enable_if< traits::is_convertible< typename traits::remove_const_and_reference< T >::type, \
typename Matrix<RTYPE, StoragePolicy>::stored_type >::value, Matrix<RTYPE, StoragePolicy> >::type \
operator __OPERATOR__ (const T &lhs, const Matrix<RTYPE, StoragePolicy> &rhs) { \
Vector<RTYPE, StoragePolicy> v = lhs __OPERATOR__ static_cast<const Vector<RTYPE, StoragePolicy> &>(rhs); \
v.attr("dim") = Vector<INTSXP>::create(rhs.nrow(), rhs.ncol()); \
return as< Matrix<RTYPE, StoragePolicy> >(v); \
}
RCPP_GENERATE_SCALAR_MATRIX_OPERATOR(+)
RCPP_GENERATE_SCALAR_MATRIX_OPERATOR(-)
RCPP_GENERATE_SCALAR_MATRIX_OPERATOR(*)
RCPP_GENERATE_SCALAR_MATRIX_OPERATOR(/)
#undef RCPP_GENERATE_SCALAR_MATRIX_OPERATOR
#endif
template<template <class> class StoragePolicy >
inline std::ostream &operator<<(std::ostream & s, const Matrix<INTSXP, StoragePolicy> & rhs) {
typedef Matrix<INTSXP, StoragePolicy> MATRIX;
typedef Vector<INTSXP, StoragePolicy> VECTOR;
std::ios::fmtflags flags = s.flags();
s << std::dec;
int min = std::numeric_limits<int>::max();
int max = std::numeric_limits<int>::min();
typename VECTOR::iterator j = static_cast<VECTOR &>(const_cast<MATRIX &>(rhs)).begin();
typename VECTOR::iterator jend = static_cast<VECTOR &>(const_cast<MATRIX &>(rhs)).end();
for ( ; j != jend; ++j) {
if (*j < min) {
min = *j;
}
if (*j > max) {
max = *j;
}
}
int digitsMax = (max >= 0) ? 0 : 1;
int digitsMin = (min >= 0) ? 0 : 1;
while (min != 0)
{
++digitsMin;
min /= 10;
}
while (max != 0)
{
++digitsMax;
max /= 10;
}
int digits = std::max(digitsMin, digitsMax);
const int rows = rhs.rows();
for (int i = 0; i < rows; ++i) {
typename MATRIX::Row row = const_cast<MATRIX &>(rhs).row(i);
typename MATRIX::Row::iterator j = row.begin();
typename MATRIX::Row::iterator jend = row.end();
if (j != jend) {
s << std::setw(digits) << (*j);
++j;
for ( ; j != jend; ++j) {
s << " " << std::setw(digits) << (*j);
}
}
s << std::endl;
}
s.flags(flags);
return s;
}
template<template <class> class StoragePolicy >
inline std::ostream &operator<<(std::ostream & s, const Matrix<STRSXP, StoragePolicy> & rhs) {
typedef Matrix<STRSXP, StoragePolicy> MATRIX;
const int rows = rhs.rows();
for (int i = 0; i < rows; ++i) {
typename MATRIX::Row row = const_cast<MATRIX &>(rhs).row(i);
typename MATRIX::Row::iterator j = row.begin();
typename MATRIX::Row::iterator jend = row.end();
if (j != jend) {
s << "\"" << (*j) << "\"";
j++;
for ( ; j != jend; j++) {
s << " \"" << (*j) << "\"";
}
}
s << std::endl;
}
return s;
}
template<int RTYPE, template <class> class StoragePolicy >
inline std::ostream &operator<<(std::ostream & s, const Matrix<RTYPE, StoragePolicy> & rhs) {
typedef Matrix<RTYPE, StoragePolicy> MATRIX;
const int rows = rhs.rows();
for (int i = 0; i < rows; ++i) {
typename MATRIX::Row row = const_cast<MATRIX &>(rhs).row(i);
typename MATRIX::Row::iterator j = row.begin();
typename MATRIX::Row::iterator jend = row.end();
if (j != jend) {
s << (*j);
j++;
for ( ; j != jend; j++) {
s << (*j);
}
}
s << std::endl;
}
return s;
}
template<int RTYPE, template <class> class StoragePolicy >
Matrix<RTYPE, StoragePolicy> tranpose_impl(const Matrix<RTYPE, StoragePolicy> & x) {
typedef Matrix<RTYPE, StoragePolicy> MATRIX;
typedef Vector<RTYPE, StoragePolicy> VECTOR;
Vector<INTSXP, StoragePolicy> dims = ::Rf_getAttrib(x, R_DimSymbol);
int nrow = dims[0], ncol = dims[1];
MATRIX r(Dimension(ncol, nrow)); // new Matrix with reversed dimension
R_xlen_t len = XLENGTH(x), len2 = XLENGTH(x)-1;
// similar approach as in R: fill by in column, "accessing row-wise"
VECTOR s = VECTOR(r.get__());
for (R_xlen_t i = 0, j = 0; i < len; i++, j += nrow) {
if (j > len2) j -= len2;
s[i] = x[j];
}
// there must be a simpler, more C++-ish way for this ...
SEXP dimNames = Rf_getAttrib(x, R_DimNamesSymbol);
if (!Rf_isNull(dimNames)) {
// do we need dimnamesnames ?
Shield<SEXP> newDimNames(Rf_allocVector(VECSXP, 2));
SET_VECTOR_ELT(newDimNames, 0, VECTOR_ELT(dimNames, 1));
SET_VECTOR_ELT(newDimNames, 1, VECTOR_ELT(dimNames, 0));
Rf_setAttrib(r, R_DimNamesSymbol, newDimNames);
}
return r;
}
template<template <class> class StoragePolicy>
Matrix<REALSXP, StoragePolicy> transpose(const Matrix<REALSXP, StoragePolicy> & x) {
return tranpose_impl<REALSXP, StoragePolicy>(x);
}
template<template <class> class StoragePolicy>
Matrix<INTSXP, StoragePolicy> transpose(const Matrix<INTSXP, StoragePolicy> & x) {
return tranpose_impl<INTSXP, StoragePolicy>(x);
}
template<template <class> class StoragePolicy>
Matrix<STRSXP, StoragePolicy> transpose(const Matrix<STRSXP, StoragePolicy> & x) {
return tranpose_impl<STRSXP, StoragePolicy>(x);
}
}
#endif
|