1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
## Simple Gibbs Sampler Example
## Adapted from Darren Wilkinson's post at
## http://darrenjw.wordpress.com/2010/04/28/mcmc-programming-in-r-python-java-and-c/
##
## Sanjog Misra and Dirk Eddelbuettel, June-July 2011
suppressMessages(library(Rcpp))
suppressMessages(library(inline))
suppressMessages(library(compiler))
suppressMessages(library(rbenchmark))
## Actual joint density -- the code which follow implements
## a Gibbs sampler to draw from the following joint density f(x,y)
fun <- function(x,y) {
x*x * exp(-x*y*y - y*y + 2*y - 4*x)
}
## Note that the full conditionals are propotional to
## f(x|y) = (x^2)*exp(-x*(4+y*y)) : a Gamma density kernel
## f(y|x) = exp(-0.5*2*(x+1)*(y^2 - 2*y/(x+1)) : Normal Kernel
## There is a small typo in Darrens code.
## The full conditional for the normal has the wrong variance
## It should be 1/sqrt(2*(x+1)) not 1/sqrt(1+x)
## This we can verify ...
## The actual conditional (say for x=3) can be computed as follows
## First - Construct the Unnormalized Conditional
fy.unnorm <- function(y) fun(3,y)
## Then - Find the appropriate Normalizing Constant
K <- integrate(fy.unnorm,-Inf,Inf)
## Finally - Construct Actual Conditional
fy <- function(y) fy.unnorm(y)/K$val
## Now - The corresponding Normal should be
fy.dnorm <- function(y) {
x <- 3
dnorm(y,1/(1+x),sqrt(1/(2*(1+x))))
}
## and not ...
fy.dnorm.wrong <- function(y) {
x <- 3
dnorm(y,1/(1+x),sqrt(1/((1+x))))
}
if (interactive()) {
## Graphical check
## Actual (gray thick line)
curve(fy,-2,2,col='grey',lwd=5)
## Correct Normal conditional (blue dotted line)
curve(fy.dnorm,-2,2,col='blue',add=T,lty=3)
## Wrong Normal (Red line)
curve(fy.dnorm.wrong,-2,2,col='red',add=T)
}
## Here is the actual Gibbs Sampler
## This is Darren Wilkinsons R code (with the corrected variance)
## But we are returning only his columns 2 and 3 as the 1:N sequence
## is never used below
Rgibbs <- function(N,thin) {
mat <- matrix(0,ncol=2,nrow=N)
x <- 0
y <- 0
for (i in 1:N) {
for (j in 1:thin) {
x <- rgamma(1,3,y*y+4)
y <- rnorm(1,1/(x+1),1/sqrt(2*(x+1)))
}
mat[i,] <- c(x,y)
}
mat
}
## We can also try the R compiler on this R function
RCgibbs <- cmpfun(Rgibbs)
## For example
## mat <- Rgibbs(10000,10); dim(mat)
## would give: [1] 10000 2
## Now for the Rcpp version -- Notice how easy it is to code up!
## NOTE: This is the old way to compile Rcpp code inline.
## The code here has left as a historical artifact and tribute to the old way.
## Please use the code under the "new" inline compilation section.
gibbscode <- '
using namespace Rcpp; // inline does that for us already
// n and thin are SEXPs which the Rcpp::as function maps to C++ vars
int N = as<int>(n);
int thn = as<int>(thin);
int i,j;
NumericMatrix mat(N, 2);
RNGScope scope; // Initialize Random number generator. Not needed when Attributes used.
// The rest of the code follows the R version
double x=0, y=0;
for (i=0; i<N; i++) {
for (j=0; j<thn; j++) {
x = ::Rf_rgamma(3.0,1.0/(y*y+4));
y = ::Rf_rnorm(1.0/(x+1),1.0/sqrt(2*x+2));
}
mat(i,0) = x;
mat(i,1) = y;
}
return mat; // Return to R
'
# Compile and Load
RcppGibbs_old <- cxxfunction(signature(n="int", thin = "int"),
gibbscode, plugin="Rcpp")
gslgibbsincl <- '
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
using namespace Rcpp; // just to be explicit
'
gslgibbscode <- '
int N = as<int>(ns);
int thin = as<int>(thns);
int i, j;
gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
double x=0, y=0;
NumericMatrix mat(N, 2);
for (i=0; i<N; i++) {
for (j=0; j<thin; j++) {
x = gsl_ran_gamma(r,3.0,1.0/(y*y+4));
y = 1.0/(x+1)+gsl_ran_gaussian(r,1.0/sqrt(2*x+2));
}
mat(i,0) = x;
mat(i,1) = y;
}
gsl_rng_free(r);
return mat; // Return to R
'
## Compile and Load
GSLGibbs_old <- cxxfunction(signature(ns="int", thns = "int"),
body=gslgibbscode, includes=gslgibbsincl,
plugin="RcppGSL")
## without RcppGSL, using cfunction()
#GSLGibbs <- cfunction(signature(ns="int", thns = "int"),
# body=gslgibbscode, includes=gslgibbsincl,
# Rcpp=TRUE,
# cppargs="-I/usr/include",
# libargs="-lgsl -lgslcblas")
## NOTE: Within this section, the new way to compile Rcpp code inline has been
## written. Please use the code next as a template for your own project.
## Use of the cppFunction() gives the ability to immediately compile embed C++
## without having to worry about header specification or Rcpp attributes.
cppFunction('
NumericMatrix RcppGibbs(int N, int thn){
// Note: n and thin are SEXPs which the Rcpp automatically converts to ints
// Setup storage matrix
NumericMatrix mat(N, 2);
// The rest of the code follows the R version
double x = 0, y = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < thn; j++) {
x = R::rgamma(3.0,1.0/(y*y+4));
y = R::rnorm(1.0/(x+1),1.0/sqrt(2*x+2));
}
mat(i,0) = x;
mat(i,1) = y;
}
return mat; // Return to R
}')
## Use of the sourceCpp() is preferred for users who wish to source external
## files or specify their headers and Rcpp attributes within their code.
## Code here is able to easily be extracted and placed into its own C++ file.
## Compile and Load
sourceCpp(code="
#include <RcppGSL.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
using namespace Rcpp; // just to be explicit
// [[Rcpp::depends(RcppGSL)]]
// [[Rcpp::export]]
NumericMatrix GSLGibbs(int N, int thin){
gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
double x = 0, y = 0;
NumericMatrix mat(N, 2);
for (int i = 0; i < N; i++) {
for (int j = 0; j < thin; j++) {
x = gsl_ran_gamma(r,3.0,1.0/(y*y+4));
y = 1.0/(x+1)+gsl_ran_gaussian(r,1.0/sqrt(2*x+2));
}
mat(i,0) = x;
mat(i,1) = y;
}
gsl_rng_free(r);
return mat; // Return to R
}")
## Now for some tests
## You can try other values if you like
## Note that the total number of interations are N*thin!
Ns <- c(1000,5000,10000,20000)
thins <- c(10,50,100,200)
tim_R <- rep(0,4)
tim_RC <- rep(0,4)
tim_Rgsl <- rep(0,4)
tim_Rcpp <- rep(0,4)
for (i in seq_along(Ns)) {
tim_R[i] <- system.time(mat <- Rgibbs(Ns[i],thins[i]))[3]
tim_RC[i] <- system.time(cmat <- RCgibbs(Ns[i],thins[i]))[3]
tim_Rgsl[i] <- system.time(gslmat <- GSLGibbs(Ns[i],thins[i]))[3]
tim_Rcpp[i] <- system.time(rcppmat <- RcppGibbs(Ns[i],thins[i]))[3]
cat("Replication #", i, "complete \n")
}
## Comparison
speedup <- round(tim_R/tim_Rcpp,2);
speedup2 <- round(tim_R/tim_Rgsl,2);
speedup3 <- round(tim_R/tim_RC,2);
summtab <- round(rbind(tim_R,tim_RC, tim_Rcpp,tim_Rgsl,speedup3,speedup,speedup2),3)
colnames(summtab) <- c("N=1000","N=5000","N=10000","N=20000")
rownames(summtab) <- c("Elasped Time (R)","Elasped Time (RC)","Elapsed Time (Rcpp)", "Elapsed Time (Rgsl)",
"SpeedUp Rcomp.","SpeedUp Rcpp", "SpeedUp GSL")
print(summtab)
## Contour Plots -- based on Darren's example
if (interactive() && require(KernSmooth)) {
op <- par(mfrow=c(4,1),mar=c(3,3,3,1))
x <- seq(0,4,0.01)
y <- seq(-2,4,0.01)
z <- outer(x,y,fun)
contour(x,y,z,main="Contours of actual distribution",xlim=c(0,2), ylim=c(-2,4))
fit <- bkde2D(as.matrix(mat),c(0.1,0.1))
contour(drawlabels=T, fit$x1, fit$x2, fit$fhat, xlim=c(0,2), ylim=c(-2,4),
main=paste("Contours of empirical distribution:",round(tim_R[4],2)," seconds"))
fitc <- bkde2D(as.matrix(rcppmat),c(0.1,0.1))
contour(fitc$x1,fitc$x2,fitc$fhat,xlim=c(0,2), ylim=c(-2,4),
main=paste("Contours of Rcpp based empirical distribution:",round(tim_Rcpp[4],2)," seconds"))
fitg <- bkde2D(as.matrix(gslmat),c(0.1,0.1))
contour(fitg$x1,fitg$x2,fitg$fhat,xlim=c(0,2), ylim=c(-2,4),
main=paste("Contours of GSL based empirical distribution:",round(tim_Rgsl[4],2)," seconds"))
par(op)
}
## also use rbenchmark package
N <- 20000
thn <- 200
res <- benchmark(Rgibbs(N, thn),
RCgibbs(N, thn),
RcppGibbs(N, thn),
GSLGibbs(N, thn),
columns=c("test", "replications", "elapsed",
"relative", "user.self", "sys.self"),
order="relative",
replications=10)
print(res)
## And we are done
|