1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
// -*- mode: C++; c-indent-level: 4; c-basic-offset: 4; indent-tabs-mode: nil; -*-
//
// norm.h: Rcpp R/C++ interface class library -- normal distribution
//
// Copyright (C) 2010 - 2016 Dirk Eddelbuettel and Romain Francois
//
// This file is part of Rcpp.
//
// Rcpp is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Rcpp is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
#ifndef Rcpp__stats__norm_h
#define Rcpp__stats__norm_h
namespace Rcpp {
namespace stats {
inline double dnorm_1(double x, double mu /*, double sigma [=1.0]*/ , int give_log) {
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(mu))
return x + mu + 1.0;
#endif
if (!R_FINITE(x) && mu == x) return ML_NAN; /* x-mu is NaN */
x = (x - mu);
if (!R_FINITE(x)) return R_D__0;
return (give_log ?
-(M_LN_SQRT_2PI + 0.5 * x * x) :
M_1_SQRT_2PI * ::exp(-0.5 * x * x));
/* M_1_SQRT_2PI = 1 / sqrt(2 * pi) */
}
inline double dnorm_0(double x /*, double mu [=0.0], double sigma [=1.0]*/ ,
int give_log) {
#ifdef IEEE_754
if (ISNAN(x))
return x + 1.0;
#endif
if (!R_FINITE(x)) return R_D__0;
return (give_log ?
-(M_LN_SQRT_2PI + 0.5 * x * x) :
M_1_SQRT_2PI * ::exp(-0.5 * x * x));
/* M_1_SQRT_2PI = 1 / sqrt(2 * pi) */
}
inline double pnorm_1(double x, double mu /*, double sigma [=1.]*/ ,
int lower_tail, int log_p) {
double p, cp;
/* Note: The structure of these checks has been carefully thought through.
* For example, if x == mu and sigma == 0, we get the correct answer 1.
*/
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(mu))
return x + mu + 1.0;
#endif
if (!R_FINITE(x) && mu == x) return ML_NAN; /* x-mu is NaN */
p = (x - mu);
if (!R_FINITE(p))
return (x < mu) ? R_DT_0 : R_DT_1;
x = p;
::Rf_pnorm_both(x, &p, &cp, (lower_tail ? 0 : 1), log_p);
return(lower_tail ? p : cp);
}
inline double pnorm_0(double x /*, double mu [=0.] , double sigma [=1.]*/ , int lower_tail, int log_p) {
double p, cp;
/* Note: The structure of these checks has been carefully thought through.
* For example, if x == mu and sigma == 0, we get the correct answer 1.
*/
#ifdef IEEE_754
if (ISNAN(x))
return x + 1.0;
#endif
p = x;
if (!R_FINITE(p))
return (x < 0.0) ? R_DT_0 : R_DT_1;
x = p;
::Rf_pnorm_both(x, &p, &cp, (lower_tail ? 0 : 1), log_p);
return(lower_tail ? p : cp);
}
inline double qnorm_1(double p, double mu /*, double sigma [=1.] */,
int lower_tail, int log_p){
return ::Rf_qnorm5(p, mu, 1.0, lower_tail, log_p);
}
inline double qnorm_0(double p /*, double mu [=0.], double sigma [=1.] */,
int lower_tail, int log_p){
return ::Rf_qnorm5(p, 0.0, 1.0, lower_tail, log_p);
}
} // stats
} // Rcpp
RCPP_DPQ_0(norm, Rcpp::stats::dnorm_0, Rcpp::stats::pnorm_0, Rcpp::stats::qnorm_0)
RCPP_DPQ_1(norm, Rcpp::stats::dnorm_1, Rcpp::stats::pnorm_1, Rcpp::stats::qnorm_1)
RCPP_DPQ_2(norm, ::Rf_dnorm4, ::Rf_pnorm5, ::Rf_qnorm5)
#endif
|