1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
.. _intro_to_creating_rdf:
====================
Creating RDF triples
====================
Creating Nodes
--------------
RDF data is a graph where the nodes are URI references, Blank Nodes or Literals. In RDFLib, these node types are
represented by the classes :class:`~rdflib.term.URIRef`, :class:`~rdflib.term.BNode`, and :class:`~rdflib.term.Literal`.
``URIRefs`` and ``BNodes`` can both be thought of as resources, such a person, a company, a website, etc.
* A ``BNode`` is a node where the exact URI is not known - usually a node with identity only in relation to other nodes.
* A ``URIRef`` is a node where the exact URI is known. In addition to representing some subjects and predicates in RDF graphs, ``URIRef``\s are always used to represent properties/predicates
* ``Literals`` represent object values, such as a name, a date, a number, etc. The most common literal values are XML data types, e.g. string, int... but custom types can be declared too
Nodes can be created by the constructors of the node classes:
.. code-block:: python
from rdflib import URIRef, BNode, Literal
bob = URIRef("http://example.org/people/Bob")
linda = BNode() # a GUID is generated
name = Literal("Bob") # passing a string
age = Literal(24) # passing a python int
height = Literal(76.5) # passing a python float
Literals can be created from Python objects, this creates ``data-typed literals``. For the details on the mapping see
:ref:`rdflibliterals`.
For creating many ``URIRefs`` in the same ``namespace``, i.e. URIs with the same prefix, RDFLib has the
:class:`rdflib.namespace.Namespace` class
::
from rdflib import Namespace
n = Namespace("http://example.org/people/")
n.bob # == rdflib.term.URIRef("http://example.org/people/bob")
n.eve # == rdflib.term.URIRef("http://example.org/people/eve")
This is very useful for schemas where all properties and classes have the same URI prefix. RDFLib defines Namespaces for
some common RDF/OWL schemas, including most W3C ones:
.. code-block:: python
from rdflib.namespace import CSVW, DC, DCAT, DCTERMS, DOAP, FOAF, ODRL2, ORG, OWL, \
PROF, PROV, RDF, RDFS, SDO, SH, SKOS, SOSA, SSN, TIME, \
VOID, XMLNS, XSD
RDF.type
# == rdflib.term.URIRef("http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
FOAF.knows
# == rdflib.term.URIRef("http://xmlns.com/foaf/0.1/knows")
PROF.isProfileOf
# == rdflib.term.URIRef("http://www.w3.org/ns/dx/prof/isProfileOf")
SOSA.Sensor
# == rdflib.term.URIRef("http://www.w3.org/ns/sosa/Sensor")
Adding Triples to a graph
-------------------------
We already saw in :doc:`intro_to_parsing`, how triples can be added from files and online locations with with the
:meth:`~rdflib.graph.Graph.parse` function.
Triples can also be added within Python code directly, using the :meth:`~rdflib.graph.Graph.add` function:
.. automethod:: rdflib.graph.Graph.add
:noindex:
:meth:`~rdflib.graph.Graph.add` takes a 3-tuple (a "triple") of RDFLib nodes. Using the nodes and
namespaces we defined previously:
.. code-block:: python
from rdflib import Graph, URIRef, Literal, BNode
from rdflib.namespace import FOAF, RDF
g = Graph()
g.bind("foaf", FOAF)
bob = URIRef("http://example.org/people/Bob")
linda = BNode() # a GUID is generated
name = Literal("Bob")
age = Literal(24)
g.add((bob, RDF.type, FOAF.Person))
g.add((bob, FOAF.name, name))
g.add((bob, FOAF.age, age))
g.add((bob, FOAF.knows, linda))
g.add((linda, RDF.type, FOAF.Person))
g.add((linda, FOAF.name, Literal("Linda")))
print(g.serialize())
outputs:
.. code-block:: Turtle
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://example.org/people/Bob> a foaf:Person ;
foaf:age 24 ;
foaf:knows [ a foaf:Person ;
foaf:name "Linda" ] ;
foaf:name "Bob" .
For some properties, only one value per resource makes sense (i.e they are *functional properties*, or have a
max-cardinality of 1). The :meth:`~rdflib.graph.Graph.set` method is useful for this:
.. code-block:: python
from rdflib import Graph, URIRef, Literal
from rdflib.namespace import FOAF
g = Graph()
bob = URIRef("http://example.org/people/Bob")
g.add((bob, FOAF.age, Literal(42)))
print(f"Bob is {g.value(bob, FOAF.age)}")
# prints: Bob is 42
g.set((bob, FOAF.age, Literal(43))) # replaces 42 set above
print(f"Bob is now {g.value(bob, FOAF.age)}")
# prints: Bob is now 43
:meth:`rdflib.graph.Graph.value` is the matching query method. It will return a single value for a property, optionally
raising an exception if there are more.
You can also add triples by combining entire graphs, see :ref:`graph-setops`.
Removing Triples
----------------
Similarly, triples can be removed by a call to :meth:`~rdflib.graph.Graph.remove`:
.. automethod:: rdflib.graph.Graph.remove
:noindex:
When removing, it is possible to leave parts of the triple unspecified (i.e. passing ``None``), this will remove all
matching triples:
.. code-block:: python
g.remove((bob, None, None)) # remove all triples about bob
An example
----------
LiveJournal produces FOAF data for their users, but they seem to use
``foaf:member_name`` for a person's full name but ``foaf:member_name``
isn't in FOAF's namespace and perhaps they should have used ``foaf:name``
To retrieve some LiveJournal data, add a ``foaf:name`` for every
``foaf:member_name`` and then remove the ``foaf:member_name`` values to
ensure the data actually aligns with other FOAF data, we could do this:
.. code-block:: python
from rdflib import Graph
from rdflib.namespace import FOAF
g = Graph()
# get the data
g.parse("http://danbri.livejournal.com/data/foaf")
# for every foaf:member_name, add foaf:name and remove foaf:member_name
for s, p, o in g.triples((None, FOAF['member_name'], None)):
g.add((s, FOAF['name'], o))
g.remove((s, FOAF['member_name'], o))
.. note:: Since rdflib 5.0.0, using ``foaf:member_name`` is somewhat prevented in RDFlib since FOAF is declared
as a :meth:`~rdflib.namespace.ClosedNamespace` class instance that has a closed set of members and
``foaf:member_name`` isn't one of them! If LiveJournal had used RDFlib 5.0.0, an error would have been raised for
``foaf:member_name`` when the triple was created.
Creating Containers & Collections
---------------------------------
There are two convenience classes for RDF Containers & Collections which you can use instead of declaring each
triple of a Containers or a Collections individually:
* :meth:`~rdflib.container.Container` (also ``Bag``, ``Seq`` & ``Alt``) and
* :meth:`~rdflib.collection.Collection`
See their documentation for how.
|