1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
# Getting started with RDFLib
## Installation
RDFLib is open source and is maintained in a [GitHub](https://github.com/RDFLib/rdflib/) repository. RDFLib releases, current and previous, are listed on [PyPI](https://pypi.python.org/pypi/rdflib/)
The best way to install RDFLib is to use `pip` (sudo as required):
```bash
pip install rdflib
```
If you want the latest code to run, clone the `main` branch of the GitHub repo and use that or you can `pip install` directly from GitHub:
```bash
pip install git+https://github.com/RDFLib/rdflib.git@main#egg=rdflib
```
## Support
Usage support is available via questions tagged with `[rdflib]` on [StackOverflow](https://stackoverflow.com/questions/tagged/rdflib) and development support, notifications and detailed discussion through the rdflib-dev group (mailing list): [http://groups.google.com/group/rdflib-dev](http://groups.google.com/group/rdflib-dev)
If you notice a bug or want to request an enhancement, please do so via our Issue Tracker in Github: [http://github.com/RDFLib/rdflib/issues](http://github.com/RDFLib/rdflib/issues)
## How it all works
*The package uses various Python idioms that offer an appropriate way to introduce RDF to a Python programmer who hasn't worked with RDF before.*
The primary interface that RDFLib exposes for working with RDF is a [`Graph`][rdflib.graph.Graph].
RDFLib graphs are un-sorted containers; they have ordinary Python `set` operations (e.g. [`add()`][rdflib.graph.Graph.add] to add a triple) plus methods that search triples and return them in arbitrary order.
RDFLib graphs also redefine certain built-in Python methods in order to behave in a predictable way. They do this by [emulating container types](https://docs.python.org/3.8/reference/datamodel.html#emulating-container-types) and are best thought of as a set of 3-item tuples ("triples", in RDF-speak):
```python
[
(subject0, predicate0, object0),
(subject1, predicate1, object1),
# ...
(subjectN, predicateN, objectN),
]
```
## A tiny example
```python
from rdflib import Graph
# Create a Graph
g = Graph()
# Parse in an RDF file hosted on the Internet
g.parse("http://www.w3.org/People/Berners-Lee/card")
# Loop through each triple in the graph (subj, pred, obj)
for subj, pred, obj in g:
# Check if there is at least one triple in the Graph
if (subj, pred, obj) not in g:
raise Exception("It better be!")
# Print the number of "triples" in the Graph
print(f"Graph g has {len(g)} statements.")
# Prints: Graph g has 86 statements.
# Print out the entire Graph in the RDF Turtle format
print(g.serialize(format="turtle"))
```
Here a [`Graph`][rdflib.graph.Graph] is created and then an RDF file online, Tim Berners-Lee's social network details, is parsed into that graph. The `print()` statement uses the `len()` function to count the number of triples in the graph.
## A more extensive example
```python
from rdflib import Graph, Literal, RDF, URIRef
# rdflib knows about quite a few popular namespaces, like W3C ontologies, schema.org etc.
from rdflib.namespace import FOAF , XSD
# Create a Graph
g = Graph()
# Create an RDF URI node to use as the subject for multiple triples
donna = URIRef("http://example.org/donna")
# Add triples using store's add() method.
g.add((donna, RDF.type, FOAF.Person))
g.add((donna, FOAF.nick, Literal("donna", lang="en")))
g.add((donna, FOAF.name, Literal("Donna Fales")))
g.add((donna, FOAF.mbox, URIRef("mailto:donna@example.org")))
# Add another person
ed = URIRef("http://example.org/edward")
# Add triples using store's add() method.
g.add((ed, RDF.type, FOAF.Person))
g.add((ed, FOAF.nick, Literal("ed", datatype=XSD.string)))
g.add((ed, FOAF.name, Literal("Edward Scissorhands")))
g.add((ed, FOAF.mbox, Literal("e.scissorhands@example.org", datatype=XSD.anyURI)))
# Iterate over triples in store and print them out.
print("--- printing raw triples ---")
for s, p, o in g:
print((s, p, o))
# For each foaf:Person in the store, print out their mbox property's value.
print("--- printing mboxes ---")
for person in g.subjects(RDF.type, FOAF.Person):
for mbox in g.objects(person, FOAF.mbox):
print(mbox)
# Bind the FOAF namespace to a prefix for more readable output
g.bind("foaf", FOAF)
# print all the data in the Notation3 format
print("--- printing mboxes ---")
print(g.serialize(format='n3'))
```
## A SPARQL query example
```python
from rdflib import Graph
# Create a Graph, parse in Internet data
g = Graph().parse("http://www.w3.org/People/Berners-Lee/card")
# Query the data in g using SPARQL
# This query returns the 'name' of all `foaf:Person` instances
q = """
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
?p rdf:type foaf:Person .
?p foaf:name ?name .
}
"""
# Apply the query to the graph and iterate through results
for r in g.query(q):
print(r["name"])
# prints: Timothy Berners-Lee
```
|