File: testMatricCalc.py

package info (click to toggle)
rdkit 201203-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 37,840 kB
  • sloc: cpp: 93,902; python: 51,897; java: 5,192; ansic: 3,497; xml: 2,499; sql: 1,641; yacc: 1,518; lex: 1,076; makefile: 325; fortran: 183; sh: 153; cs: 51
file content (156 lines) | stat: -rwxr-xr-x 4,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from rdkit import RDConfig
import unittest
from rdkit.DataManip.Metric import rdMetricMatrixCalc as rdmmc
import numpy
import random
from rdkit import DataStructs

def feq(v1,v2,tol2=1e-4):
    return abs(v1-v2)<=tol2

class TestCase(unittest.TestCase):

    def setUp(self) :
        pass

    def test0DistsArray(self) :
        exp = numpy.array([1., 1.414213, 1.0], 'd')

        # initialize a double array and check if get back the expected distances
        desc = numpy.zeros((3,2), 'd')
        desc[1,0] = 1.0
        desc[2,0] = 1.0
        desc[2,1] = 1.0

        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

        # repeat with an flaot array
        desc = numpy.zeros((3,2), 'f')
        desc[1,0] = 1.0
        desc[2,0] = 1.0
        desc[2,1] = 1.0

        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

        # finally with an interger array
        desc = numpy.zeros((3,2), 'i')
        desc[1,0] = 1
        desc[2,0] = 1
        desc[2,1] = 1

        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

    def ctest1DistsListArray(self):
        exp = numpy.array([1., 1.414213, 1.0], 'd')

        desc = [numpy.array([0.0, 0.0], 'd'),
                numpy.array([1.0, 0.0], 'd'),
                numpy.array([1.0, 1.0], 'd')]
        dmat = rdmmc.GetEuclideanDistMat(desc)

        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

        # repeat the test with a list of numpy.arrays of floats
        desc = [numpy.array([0.0, 0.0], 'f'),
                numpy.array([1.0, 0.0], 'f'),
                numpy.array([1.0, 1.0], 'f')]
        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

        # repeat the test with a list of numpy.arrays of ints
        desc = [numpy.array([0, 0], 'i'),
                numpy.array([1, 0], 'i'),
                numpy.array([1, 1], 'i')]
        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

    def test2DistListList(self) :
        exp = numpy.array([1., 1.414213, 1.0], 'd')

        desc = [[0.0, 0.0],
                [1.0, 0.0],
                [1.0, 1.0]]
        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

        #test with ints
        desc = [[0, 0],
                [1, 0],
                [1, 1]]
        dmat = rdmmc.GetEuclideanDistMat(desc)
        for i in range(numpy.shape(dmat)[0]) :
            assert feq(dmat[i], exp[i])

    def test3Compare(self) :
        n = 30
        m = 5

        dscArr = numpy.zeros((n,m), 'd')
        for i in range(n):
            for j in range(m):
                dscArr[i,j] = random.random()
        dmatArr = rdmmc.GetEuclideanDistMat(dscArr)

        dscLL = []
        for i in range(n) :
            row = []
            for j in range(m):
                row.append(dscArr[i,j])
            dscLL.append(row)
        dmatLL = rdmmc.GetEuclideanDistMat(dscLL)

        assert numpy.shape(dmatArr) == numpy.shape(dmatLL)

        for i in range(n*(n-1)/2):
            assert feq(dmatArr[i], dmatLL[i])

    def test4ebv(self) :

        n = 30
        m = 2048
        dm = 800
        lst = []
        for i in range(n):
            v = DataStructs.ExplicitBitVect(m)
            for j in range(dm) :
                v.SetBit(random.randrange(0, m))
            lst.append(v)

        dMat = rdmmc.GetTanimotoDistMat(lst)

        sMat = rdmmc.GetTanimotoSimMat(lst)

        for i in range(n*(n-1)/2) :
            assert feq(sMat[i] + dMat[i], 1.0) 
                        
    def test5sbv(self) :

        n = 30
        m = 2048
        dm = 800
        lst = []
        for i in range(n):
            v = DataStructs.SparseBitVect(m)
            for j in range(dm) :
                v.SetBit(random.randrange(0, m))
            lst.append(v)

        dMat = rdmmc.GetTanimotoDistMat(lst)

        sMat = rdmmc.GetTanimotoSimMat(lst)

        for i in range(n*(n-1)/2) :
            assert feq(sMat[i] + dMat[i], 1.0) 
                        
if __name__ == '__main__':
    unittest.main()