File: AddHs.cpp

package info (click to toggle)
rdkit 201203-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 37,840 kB
  • sloc: cpp: 93,902; python: 51,897; java: 5,192; ansic: 3,497; xml: 2,499; sql: 1,641; yacc: 1,518; lex: 1,076; makefile: 325; fortran: 183; sh: 153; cs: 51
file content (590 lines) | stat: -rw-r--r-- 24,253 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
// $Id: AddHs.cpp 1832 2011-09-28 05:24:38Z glandrum $
//
//  Copyright (C) 2003-2010 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "RDKitBase.h"
#include <list>
#include "QueryAtom.h"
#include "QueryOps.h"
#include <Geometry/Transform3D.h>
#include <Geometry/point.h>
#include <boost/foreach.hpp>

namespace RDKit{

  // Local utility functionality:
  namespace {
    Atom *getAtomNeighborNot(ROMol *mol,const Atom *atom,const Atom *other){
      PRECONDITION(mol,"bad molecule");
      PRECONDITION(atom,"bad atom");
      PRECONDITION(atom->getDegree()>1,"bad degree");
      PRECONDITION(other,"bad atom");
      Atom *res=0;

      ROMol::ADJ_ITER nbrIdx,endNbrs;
      boost::tie(nbrIdx,endNbrs) = mol->getAtomNeighbors(atom);
      while(nbrIdx!=endNbrs){
        if(*nbrIdx != other->getIdx()){
          res = mol->getAtomWithIdx(*nbrIdx);
          break;
        }
        ++nbrIdx;
      }

      POSTCONDITION(res,"no neighbor found");
      return res;
    }

    void setHydrogenCoords(ROMol *mol,unsigned int hydIdx,unsigned int heavyIdx){
      // we will loop over all the coordinates 
      PRECONDITION(mol,"bad molecule");
      PRECONDITION(heavyIdx!=hydIdx,"degenerate atoms");
      Atom *hydAtom = mol->getAtomWithIdx(hydIdx);
      PRECONDITION(mol->getAtomDegree(hydAtom)==1,"bad atom degree");
      const Bond *bond=mol->getBondBetweenAtoms(heavyIdx,hydIdx);
      PRECONDITION(bond,"no bond between atoms");

      const Atom *heavyAtom = mol->getAtomWithIdx(heavyIdx);
      double bondLength = PeriodicTable::getTable()->getRb0(1) +
        PeriodicTable::getTable()->getRb0(heavyAtom->getAtomicNum());
    
      RDGeom::Point3D dirVect(0,0,0);

      RDGeom::Point3D perpVect,rotnAxis,nbrPerp;
      RDGeom::Point3D nbr1Vect,nbr2Vect,nbr3Vect;
      RDGeom::Transform3D tform;
      RDGeom::Point3D heavyPos, hydPos; 

      const Atom *nbr1=0,*nbr2=0,*nbr3=0;
      const Bond *nbrBond;
      ROMol::ADJ_ITER nbrIdx,endNbrs;

      switch(heavyAtom->getDegree()){
      case 1:
        // --------------------------------------------------------------------------
        //   No other atoms present:
        // --------------------------------------------------------------------------
        dirVect.z = 1;
        // loop over the conformations and set the coordinates
        for (ROMol::ConformerIterator cfi = mol->beginConformers();
             cfi != mol->endConformers(); cfi++) {
          heavyPos = (*cfi)->getAtomPos(heavyIdx);
          hydPos = heavyPos + dirVect*bondLength;
          (*cfi)->setAtomPos(hydIdx, hydPos);
        }
        break;

      case 2:
        // --------------------------------------------------------------------------
        //  One other neighbor:
        // --------------------------------------------------------------------------
        nbr1=getAtomNeighborNot(mol,heavyAtom,hydAtom);
        for (ROMol::ConformerIterator cfi = mol->beginConformers();
             cfi != mol->endConformers(); ++cfi) {
          heavyPos = (*cfi)->getAtomPos(heavyIdx);
          RDGeom::Point3D nbr1Pos = (*cfi)->getAtomPos(nbr1->getIdx());
          // get a normalized vector pointing away from the neighbor:
          nbr1Vect = heavyPos.directionVector(nbr1Pos);
          nbr1Vect *= -1;

          // ok, nbr1Vect points away from the other atom, figure out where
          // this H goes:
          switch(heavyAtom->getHybridization()){
          case Atom::SP3:
            // get a perpendicular to nbr1Vect:
            perpVect=nbr1Vect.getPerpendicular();
            // and move off it:
            tform.SetRotation((180-109.471)*M_PI/180.,perpVect);
            dirVect = tform*nbr1Vect;
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
            break;
          case Atom::SP2:
            // default position is to just take an arbitrary perpendicular:
            perpVect = nbr1Vect.getPerpendicular();
          
            if(nbr1->getDegree()>1){
              // can we use the neighboring atom to establish a perpendicular?
              nbrBond=mol->getBondBetweenAtoms(heavyIdx,nbr1->getIdx());
              if(nbrBond->getIsAromatic() || nbrBond->getBondType()==Bond::DOUBLE){
                nbr2=getAtomNeighborNot(mol,nbr1,heavyAtom);
                nbr2Vect=nbr1Pos.directionVector((*cfi)->getAtomPos(nbr2->getIdx()));
                perpVect = nbr2Vect.crossProduct(nbr1Vect);
              }
            }
            perpVect.normalize();
            // rotate the nbr1Vect 60 degrees about perpVect and we're done:
            tform.SetRotation(60.*M_PI/180.,perpVect);
            dirVect = tform*nbr1Vect;
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
            break;
          case Atom::SP:
            // just lay the H along the vector:
            dirVect=nbr1Vect;
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
            break;
          default:
            // FIX: handle other hybridizations
            // for now, just lay the H along the vector:
            dirVect=nbr1Vect;
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
          }
        }
        break;
      case 3:
        // --------------------------------------------------------------------------
        // Two other neighbors:
        // --------------------------------------------------------------------------
        boost::tie(nbrIdx,endNbrs) = mol->getAtomNeighbors(heavyAtom);
        while(nbrIdx!=endNbrs){
          if(*nbrIdx != hydIdx){
            if(!nbr1) nbr1 = mol->getAtomWithIdx(*nbrIdx);
            else nbr2 = mol->getAtomWithIdx(*nbrIdx);
          }
          ++nbrIdx;
        }
        TEST_ASSERT(nbr1);
        TEST_ASSERT(nbr2);
        for (ROMol::ConformerIterator cfi = mol->beginConformers();
             cfi != mol->endConformers(); ++cfi) {
          // start along the average of the two vectors:
          heavyPos = (*cfi)->getAtomPos(heavyIdx);
          nbr1Vect = (*cfi)->getAtomPos(nbr1->getIdx()).directionVector(heavyPos);
          nbr2Vect = (*cfi)->getAtomPos(nbr2->getIdx()).directionVector(heavyPos);
          dirVect = nbr1Vect+nbr2Vect;
          dirVect.normalize();

          switch(heavyAtom->getHybridization()){
          case Atom::SP3:
            // get the perpendicular to the neighbors:
            nbrPerp = nbr1Vect.crossProduct(nbr2Vect);
            // and the perpendicular to that:
            rotnAxis = nbrPerp.crossProduct(dirVect);
            // and then rotate about that:
            rotnAxis.normalize();
            tform.SetRotation((109.471/2)*M_PI/180.,rotnAxis);
            dirVect = tform*dirVect;
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
            break;
          case Atom::SP2:
            // don't need to do anything here, the H atom goes right on the
            // direction vector
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
            break;
          default:
            // FIX: handle other hybridizations
            // for now, just lay the H along the neighbor vector;
            hydPos = heavyPos + dirVect*bondLength;
            (*cfi)->setAtomPos(hydIdx, hydPos);
            break;
          } 
        }
        break;
      case 4:
        // --------------------------------------------------------------------------
        // Three other neighbors:
        // --------------------------------------------------------------------------
        boost::tie(nbrIdx,endNbrs) = mol->getAtomNeighbors(heavyAtom);
        if(heavyAtom->hasProp("_CIPCode")){
          // if the central atom is chiral, we'll order the neighbors
          // by CIP rank:
          std::vector< std::pair<int,int> >  nbrs;
          while(nbrIdx!=endNbrs){
            if(*nbrIdx != hydIdx){
              const Atom *tAtom=mol->getAtomWithIdx(*nbrIdx);
              int cip=0;
              if(tAtom->hasProp("_CIPRank")){
                tAtom->getProp("_CIPRank",cip);
              }
              nbrs.push_back(std::make_pair(cip,*nbrIdx));
            }
            ++nbrIdx;
          }
          std::sort(nbrs.begin(),nbrs.end());
          nbr1 = mol->getAtomWithIdx(nbrs[0].second);
          nbr2 = mol->getAtomWithIdx(nbrs[1].second);
          nbr3 = mol->getAtomWithIdx(nbrs[2].second);
        } else {
          // central atom isn't chiral, so the neighbor ordering isn't important:
          while(nbrIdx!=endNbrs){
            if(*nbrIdx != hydIdx){
              if(!nbr1){
                nbr1 = mol->getAtomWithIdx(*nbrIdx);
              } else if(!nbr2) {
                nbr2 = mol->getAtomWithIdx(*nbrIdx);
              } else {
                nbr3 = mol->getAtomWithIdx(*nbrIdx);
              }
            }
            ++nbrIdx;
          }
        }
        TEST_ASSERT(nbr1);
        TEST_ASSERT(nbr2);
        TEST_ASSERT(nbr3);
        for (ROMol::ConformerIterator cfi = mol->beginConformers();
             cfi != mol->endConformers(); ++cfi) {
          // use the average of the three vectors:
          heavyPos = (*cfi)->getAtomPos(heavyIdx);
          nbr1Vect = (*cfi)->getAtomPos(nbr1->getIdx()).directionVector(heavyPos);
          nbr2Vect = (*cfi)->getAtomPos(nbr2->getIdx()).directionVector(heavyPos);
          nbr3Vect = (*cfi)->getAtomPos(nbr3->getIdx()).directionVector(heavyPos);
          // if three neighboring atoms are more or less planar, this
          // is going to be in a quasi-random (but almost definitely bad) direction...
          // correct for this (issue 2951221):
          if(fabs(nbr3Vect.dotProduct(nbr1Vect.crossProduct(nbr2Vect)))<0.1){
            // compute the normal:
            dirVect = nbr1Vect.crossProduct(nbr2Vect);
            if(heavyAtom->hasProp("_CIPCode")){
              // the heavy atom is a chiral center, make sure
              // that we went go the right direction to preserve
              // its chirality. We use the chiral volume for this:
              RDGeom::Point3D v1=dirVect-nbr3Vect;
              RDGeom::Point3D v2=nbr1Vect-nbr3Vect;
              RDGeom::Point3D v3=nbr2Vect-nbr3Vect;
              double vol = v1.dotProduct(v2.crossProduct(v3));
              std::string cipCode;
              heavyAtom->getProp("_CIPCode", cipCode);
              if( (cipCode=="S" && vol<0) || (cipCode=="R" && vol>0) ){
                dirVect*=-1;
              }
            }
          } else {
            dirVect = nbr1Vect+nbr2Vect+nbr3Vect;
            dirVect.normalize();
          }
          hydPos = heavyPos + dirVect*bondLength;
          (*cfi)->setAtomPos(hydIdx, hydPos);
        }
        break;
      default:
        // --------------------------------------------------------------------------
        // FIX: figure out what to do here
        // --------------------------------------------------------------------------
        hydPos = heavyPos + dirVect*bondLength;
        for (ROMol::ConformerIterator cfi = mol->beginConformers();
             cfi != mol->endConformers(); ++cfi) {
          (*cfi)->setAtomPos(hydIdx, hydPos);
        }
        break;
      }
    }
  }  // end of unnamed namespace


  namespace MolOps {
    ROMol *addHs(const ROMol &mol,bool explicitOnly,bool addCoords){
      RWMol *res = new RWMol(mol);

      // when we hit each atom, clear its computed properties
      // NOTE: it is essential that we not clear the ring info in the
      // molecule's computed properties.  We don't want to have to
      // regenerate that.  This caused Issue210 and Issue212:
      res->clearComputedProps(false);

      // precompute the number of hydrogens we are going to add so that we can
      // pre-allocate the necessary space on the conformations of the molecule
      // for their coordinates
      unsigned int numAddHyds = 0;
      for(ROMol::ConstAtomIterator at=mol.beginAtoms();at!=mol.endAtoms();++at){
        numAddHyds += (*at)->getNumExplicitHs();
        if (!explicitOnly) {
          numAddHyds += (*at)->getNumImplicitHs();
        }
      }
      unsigned int nSize = mol.getNumAtoms() + numAddHyds;

      // loop over the conformations of the molecule and allocate new space
      // for the H locations (need to do this even if we aren't adding coords so
      // that the conformers have the correct number of atoms).
      for (ROMol::ConformerIterator cfi = res->beginConformers();
           cfi != res->endConformers(); ++cfi) {
        (*cfi)->reserve(nSize);
      }

      for(ROMol::ConstAtomIterator at=mol.beginAtoms();at!=mol.endAtoms();++at){
        unsigned int newIdx;
        Atom *newAt=res->getAtomWithIdx((*at)->getIdx());
        newAt->clearComputedProps();
        // always convert explicit Hs
        for(unsigned int i=0;i<(*at)->getNumExplicitHs();i++){
          newIdx=res->addAtom(new Atom(1),false,true);
          res->addBond((*at)->getIdx(),newIdx,Bond::SINGLE);
          res->getAtomWithIdx(newIdx)->updatePropertyCache();
          if(addCoords) setHydrogenCoords(res,newIdx,(*at)->getIdx());
        }
        // clear the local property
        newAt->setNumExplicitHs(0);

        if(!explicitOnly){
          // take care of implicits
          for(unsigned int i=0;i<(*at)->getNumImplicitHs();i++){
            newIdx=res->addAtom(new Atom(1),false,true);
            res->addBond((*at)->getIdx(),newIdx,Bond::SINGLE);
            // set the isImplicit label so that we can strip these back
            // off later if need be.
            res->getAtomWithIdx(newIdx)->setProp("isImplicit",1, true);
            res->getAtomWithIdx(newIdx)->updatePropertyCache();
            if(addCoords) setHydrogenCoords(res,newIdx,(*at)->getIdx());
          }
          // be very clear about implicits not being allowed in this representation
          newAt->setProp("origNoImplicit",(*at)->getNoImplicit(), true);
          newAt->setNoImplicit(true);
        }
        // update the atom's derived properties (valence count, etc.)
        newAt->updatePropertyCache();
      }
      return static_cast<ROMol *>(res);
    };


    //
    //  This routine removes hydrogens (and bonds to them) from the molecular graph.
    //  Other Atom and bond indices may be affected by the removal.
    //
    //  NOTES:
    //   - Hydrogens which aren't connected to a heavy atom will not be
    //     removed.  This prevents molecules like "[H][H]" from having
    //     all atoms removed.
    //   - Labelled hydrogen (e.g. atoms with atomic number=1, but mass > 1),
    //     will not be removed.
    //
    ROMol *removeHs(const ROMol &mol,bool implicitOnly,bool updateExplicitCount,bool sanitize){
      unsigned int currIdx=0,origIdx=0;
      std::map<unsigned int,unsigned int> idxMap;
      RWMol *res = new RWMol(mol);
      while(currIdx < res->getNumAtoms()){
        Atom *atom = res->getAtomWithIdx(currIdx);
        idxMap[origIdx]=currIdx;
        ++origIdx;
        if(atom->getAtomicNum()==1){
          bool removeIt=false;

          if(atom->hasProp("isImplicit")){
            removeIt=true;
          } else if(!implicitOnly && atom->getMass()<1.1){
            ROMol::ADJ_ITER begin,end;
            boost::tie(begin,end) = res->getAtomNeighbors(atom);
            while(begin!=end){
              if(res->getAtomWithIdx(*begin)->getAtomicNum() != 1){
                removeIt=true;
                break;
              }
              ++begin;
            }
          }

          if(removeIt){
            ROMol::OEDGE_ITER beg,end;
            boost::tie(beg,end) = res->getAtomBonds(atom);
            // note the assumption that the H only has one neighbor... I
            // feel no need to handle the case of hypervalent hydrogen!
            // :-) 
            const BOND_SPTR bond = (*res)[*beg];
            Atom *heavyAtom =bond->getOtherAtom(atom);

            // we'll update the atom's explicit H count if we were told to
            // *or* if the atom is chiral, in which case the H is needed
            // in order to complete the coordination
            // *or* if the atom has the noImplicit flag set:
            if( updateExplicitCount || heavyAtom->getNoImplicit() || 
                heavyAtom->getChiralTag()!=Atom::CHI_UNSPECIFIED ){
              heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs()+1);
            } else {
              // this is a special case related to Issue 228 and the
              // "disappearing Hydrogen" problem discussed in MolOps::adjustHs
              //
              // If we remove a hydrogen from an aromatic N, we need to
              // be *sure* to increment the explicit count, even if the
              // H itself isn't marked as explicit
              if(heavyAtom->getAtomicNum()==7 && heavyAtom->getIsAromatic()
                 && heavyAtom->getFormalCharge()==0){
                heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs()+1);
              }
            }

            // One other consequence of removing the H from the graph is
            // that we may change the ordering of the bonds about a
            // chiral center.  This may change the chiral label at that
            // atom.  We deal with that by explicitly checking here:
            if(heavyAtom->getChiralTag()!=Atom::CHI_UNSPECIFIED){
              INT_LIST neighborIndices;
              boost::tie(beg,end) = res->getAtomBonds(heavyAtom);
              while(beg!=end){
                if((*res)[*beg]->getIdx()!=bond->getIdx()){
                  neighborIndices.push_back((*res)[*beg]->getIdx());
                }
                ++beg;
              }
              neighborIndices.push_back(bond->getIdx());
              
              int nSwaps = heavyAtom->getPerturbationOrder(neighborIndices);
              //std::cerr << "H: "<<atom->getIdx()<<" hvy: "<<heavyAtom->getIdx()<<" swaps: " << nSwaps<<std::endl;
              if(nSwaps%2){
                heavyAtom->invertChirality();
              }
            }     
            res->removeAtom(atom);
          } else {
            // only increment the atom idx if we don't remove the atom
            currIdx++;
          }
        } else {
          // only increment the atom idx if we don't remove the atom
          currIdx++;
          if(atom->hasProp("origNoImplicit")){
            // we'll get in here if we haven't already processed the atom's implicit
            //  hydrogens. (this is protection for the case that removeHs() is called
            //  multiple times on a single molecule without intervening addHs() calls)
            bool tmpBool;
            atom->getProp("origNoImplicit",tmpBool);    
            atom->setNoImplicit(tmpBool);
            atom->clearProp("origNoImplicit");
          }
        }
      }
      //
      //  If we didn't only remove implicit Hs, which are guaranteed to
      //  be the highest numbered atoms, we may have altered atom indices.
      //  This can screw up derived properties (such as ring members), so
      //  do some checks:
      //
      if(!implicitOnly){
        if(sanitize){
          try{
            sanitizeMol(*res);
          } catch (MolSanitizeException &se){
            if(res) delete res;
            throw se;
          }

        }
        if(mol.hasProp("_StereochemDone")){
          // stereochem had been perceived in the original molecule,
          // loop over the bonds and fix their stereoAtoms fields:
          for(ROMol::BondIterator bondIt=res->beginBonds();
              bondIt!=res->endBonds();
              ++bondIt){
            Bond *bond=*bondIt;
            if( bond->getBondType()==Bond::DOUBLE &&
                bond->getStereo()!=Bond::STEREONONE){
              BOOST_FOREACH(int &v,bond->getStereoAtoms()){
                v = idxMap[v];
              }
            }
          }
        }
      }

      return static_cast<ROMol *>(res);
    };

    //
    //  This routine removes explicit hydrogens (and bonds to them) from
    //  the molecular graph and adds them as queries to the heavy atoms
    //  to which they are bound.  If the heavy atoms (or atom queries)
    //  already have hydrogen-count queries, they will be updated.
    //
    //  NOTE:
    //   - Hydrogens which aren't connected to a heavy atom will not be
    //     removed.  This prevents molecules like "[H][H]" from having
    //     all atoms removed.
    //
    ROMol *mergeQueryHs(const ROMol &mol){
      RWMol *res = new RWMol(mol);
      std::vector<unsigned int> atomsToRemove;
      
      unsigned int currIdx=0;
      while(currIdx < res->getNumAtoms()){
        Atom *atom = res->getAtomWithIdx(currIdx);
        if(atom->getAtomicNum()!=1){
          unsigned int numHsToRemove=0;
          ROMol::ADJ_ITER begin,end;
          boost::tie(begin,end) = res->getAtomNeighbors(atom);
          while(begin!=end){
            if(res->getAtomWithIdx(*begin)->getAtomicNum() == 1 &&
               res->getAtomWithIdx(*begin)->getDegree() == 1 ){
              atomsToRemove.push_back(*begin);
              ++numHsToRemove;
            }
            ++begin;
          }
          if(numHsToRemove){
            //
            //  We have H neighbors:
            //   If we have no H query already:
            //        - add a generic H query
            //      else:
            //        - do nothing
            //
            //  Examples:
            //    C[H] -> [C;!H0]
            //    [C;H1][H] -> [C;H1]
            //    [C;H2][H] -> [C;H2]
            //
            // FIX: this is going to behave oddly in the case of a contradictory
            //  SMARTS like: [C;H0][H], where it will give the equivalent of:
            //  [C;H0]  I think this is actually correct, but I can be persuaded
            //  otherwise.
            //
            //  First we'll search for an H query:
            bool hasHQuery=false;
            if(atom->hasQuery()){
              std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack(atom->getQuery()->beginChildren(),
                                                                           atom->getQuery()->endChildren());
              while( !hasHQuery && childStack.size() ){
                QueryAtom::QUERYATOM_QUERY::CHILD_TYPE query = childStack.front();
                childStack.pop_front();
                if(query->getDescription()=="AtomHCount"){
                  hasHQuery=true;
                } else {
                  QueryAtom::QUERYATOM_QUERY::CHILD_VECT_CI child1;
                  for(child1=query->beginChildren();
                      child1!=query->endChildren();
                      ++child1){
                    childStack.push_back(*child1);
                  }
                }
              }
            } else {
              // it wasn't a query atom, we need to replace it so that we can add a query:
              ATOM_EQUALS_QUERY *tmp=makeAtomNumEqualsQuery(atom->getAtomicNum());
              QueryAtom *newAt = new QueryAtom;
              newAt->setQuery(tmp);
              res->replaceAtom(atom->getIdx(),newAt);
              delete newAt;
              atom = res->getAtomWithIdx(currIdx);
            }
            if(!hasHQuery){
              for(unsigned int i=0;i<numHsToRemove;++i){
                ATOM_EQUALS_QUERY *tmp=makeAtomHCountQuery(i);
                tmp->setNegation(true);
                atom->expandQuery(tmp);
              }
            }
          }
        }
        ++currIdx;
      }
      std::sort(atomsToRemove.begin(),atomsToRemove.end());
      for(std::vector<unsigned int>::const_reverse_iterator aiter=atomsToRemove.rbegin();
          aiter!=atomsToRemove.rend();++aiter){
        Atom *atom = res->getAtomWithIdx(*aiter);
        res->removeAtom(atom);
      }

      return static_cast<ROMol *>(res);
    };
  }; // end of namespace MolOps
}; // end of namespace RDKit