1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
|
// $Id: Chirality.cpp 2005 2012-03-27 10:27:18Z glandrum $
//
// Copyright (C) 2004-2008 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/RankAtoms.h>
#include <RDGeneral/types.h>
#include <sstream>
#include <algorithm>
#include <RDGeneral/utils.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>
#include <boost/dynamic_bitset.hpp>
#include <Geometry/point.h>
namespace RDKit{
namespace Chirality {
typedef std::pair<int,int> INT_PAIR;
typedef std::vector<INT_PAIR> INT_PAIR_VECT;
typedef std::vector<INT_PAIR>::iterator INT_PAIR_VECT_I;
typedef std::vector<INT_PAIR>::const_iterator INT_PAIR_VECT_CI;
typedef INT_VECT CIP_ENTRY;
typedef std::vector< CIP_ENTRY > CIP_ENTRY_VECT;
template <typename T>
void debugVect(const std::vector<T> arg){
typename std::vector<T>::const_iterator viIt;
std::stringstream outS;
for(viIt=arg.begin();viIt!=arg.end();viIt++){
outS << *viIt << " ";
}
BOOST_LOG(rdDebugLog) << outS.str() << std::endl;
}
// compare the first elements of two pairs of integers
int _pairComp(const INT_PAIR &arg1,const INT_PAIR &arg2){
return (arg1.first < arg2.first);
}
// --------------------------------------------------
//
// Calculates chiral invariants for the atoms of a molecule
// These are based on Labute's proposal in:
// "An Efficient Algorithm for the Determination of Topological
// RS Chirality" Journal of the CCG (1996)
//
// --------------------------------------------------
void buildCIPInvariants(const ROMol &mol,DOUBLE_VECT &res){
PRECONDITION(res.size()>=mol.getNumAtoms(),"res vect too small");
int atsSoFar=0;
//
// NOTE:
// If you make modifications to this, keep in mind that it is
// essential that the initial comparison of ranks behave properly.
// So, though it seems like it would makes sense to include
// information about the number of Hs (or charge, etc) in the CIP
// invariants, this will result in bad rankings. For example, in
// this molecule: OC[C@H](C)O, including the number of Hs would
// cause the methyl group (atom 3) to be ranked higher than the CH2
// connected to O (atom 1). This is totally wrong.
//
// We also don't include any pre-existing stereochemistry information.
// Though R and S assignments do factor in to the priorities of atoms,
// we're starting here from scratch and we'll let the R and S stuff
// be taken into account during the iterations.
//
for(ROMol::ConstAtomIterator atIt=mol.beginAtoms();atIt!=mol.endAtoms();++atIt){
Atom const *atom = *atIt;
unsigned long invariant = 0;
int num = atom->getAtomicNum() % 128;
// get an int with the deviation in the mass from the default:
int mass = static_cast<int>(atom->getMass() -
PeriodicTable::getTable()->getAtomicWeight(atom->getAtomicNum()));
mass += 8;
if(mass < 0) mass = 0;
else mass = mass % 16;
// NOTE: the inclusion of hybridization in the invariant (as
// suggested in the original paper), leads to the situation
// that
// C[C@@](O)(C=C)C(C)CC
// and
// C[C@@](O)(C=C)C(C)CO
// are assigned S chirality even though the rest of the world
// seems to agree that they ought to be R (atom 3, sp2, is ranked
// higher than atom 5, sp3, no matter what their environments)
int hyb=0;
switch(atom->getHybridization()) {
case Atom::SP: hyb=6;break;
case Atom::SP2: hyb=5;break;
case Atom::SP3: hyb=1;break;
case Atom::SP3D: hyb=3;break;
case Atom::SP3D2: hyb=2;break;
default: break;
}
invariant = num; // 7 bits here
invariant = (invariant << 4) | mass;
res[atsSoFar++] = invariant;
}
}
void iterateCIPRanks(const ROMol &mol, DOUBLE_VECT &invars, INT_VECT &ranks,bool seedWithInvars){
PRECONDITION(invars.size()==mol.getNumAtoms(),"bad invars size");
PRECONDITION(ranks.size()>=mol.getNumAtoms(),"bad ranks size");
int numAtoms = mol.getNumAtoms();
CIP_ENTRY_VECT cipEntries(numAtoms);
INT_LIST allIndices;
INT_LIST activeIndices;
for(int i=0;i<numAtoms;++i){
activeIndices.push_back(i);
allIndices.push_back(i);
}
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "invariants:" << std::endl;
for(int i=0;i<numAtoms;i++){
BOOST_LOG(rdDebugLog) << i << ": " << invars[i] << std::endl;
}
#endif
// rank those:
RankAtoms::sortAndRankVect(numAtoms,invars,allIndices,ranks);
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "initial ranks:" << std::endl;
for(int i=0;i<numAtoms;++i){
BOOST_LOG(rdDebugLog) << i << ": " << ranks[i] << std::endl;
}
#endif
RankAtoms::updateInPlayIndices(ranks,activeIndices);
// Start each atom's rank vector with its atomic number:
// Note: in general one should avoid the temptation to
// use invariants here, those lead to incorrect answers
for(int i=0;i<numAtoms;i++){
if(!seedWithInvars){
cipEntries[i].push_back(mol.getAtomWithIdx(i)->getAtomicNum());
} else {
cipEntries[i].push_back(static_cast<int>(invars[i]));
}
}
// Loop until either:
// 1) all classes are uniquified
// 2) the number of ranks doesn't change from one iteration to
// the next
// 3) we've gone through maxIts times
// maxIts is calculated by dividing the number of atoms
// by 2. That's a pessimal version of the
// maximum number of steps required for two atoms to
// "feel" each other (each influences one additional
// neighbor shell per iteration).
int maxIts=numAtoms/2+1;
int numIts=0;
int lastNumRanks=-1;
int numRanks=*std::max_element(ranks.begin(),ranks.end())+1;
while( !activeIndices.empty() && numIts<maxIts && (lastNumRanks==-1 || lastNumRanks<numRanks) ){
unsigned int longestEntry=0;
// ----------------------------------------------------
//
// for each atom, get a sorted list of its neighbors' ranks:
//
for(INT_LIST_I it=allIndices.begin();
it!=allIndices.end();
++it){
CIP_ENTRY localEntry;
localEntry.reserve(16);
// start by pushing on our neighbors' ranks:
ROMol::ADJ_ITER nbr,endNbrs;
boost::tie(nbr,endNbrs) = mol.getAtomNeighbors(mol.getAtomWithIdx(*it));
while(nbr != endNbrs){
int rank=ranks[*nbr]+1;
const Bond *bond=mol.getBondBetweenAtoms(*nbr,*it);
// put the neighbor in 2N times where N is the bond order as a double.
// this is to treat aromatic linkages on fair footing. i.e. at least in the
// first iteration --c(:c):c and --C(=C)-C should look the same.
// this was part of issue 3009911
unsigned int count;
if(bond->getBondType()==Bond::DOUBLE &&
mol.getAtomWithIdx(*nbr)->getAtomicNum()==15 &&
(mol.getAtomWithIdx(*nbr)->getDegree()==4 ||
mol.getAtomWithIdx(*nbr)->getDegree()==3) ) {
// a special case for chiral phophorous compounds
// (this was leading to incorrect assignment of
// R/S labels ):
count=1;
// general justification of this is:
// Paragraph 2.2. in the 1966 article is "Valence-Bond Conventions:
// Multiple-Bond Unsaturation and Aromaticity". It contains several
// conventions of which convention (b) is the one applying here:
// "(b) Contibutions by d orbitals to bonds of quadriligant atoms are
// neglected."
// FIX: this applies to more than just P
} else {
count=static_cast<unsigned int>(floor(2.*bond->getBondTypeAsDouble()+.1));
}
CIP_ENTRY::iterator ePos=std::lower_bound(localEntry.begin(),localEntry.end(),rank);
localEntry.insert(ePos,count,rank);
++nbr;
}
// add a zero for each coordinated H:
// (as long as we're not a query atom)
if(!mol.getAtomWithIdx(*it)->hasQuery()){
localEntry.insert(localEntry.begin(),
mol.getAtomWithIdx(*it)->getTotalNumHs(),
0);
}
// we now have a sorted list of our neighbors' ranks,
// copy it on in reversed order:
cipEntries[*it].insert(cipEntries[*it].end(),
localEntry.rbegin(),
localEntry.rend());
if(cipEntries[*it].size() > longestEntry){
longestEntry = cipEntries[*it].size();
}
}
// ----------------------------------------------------
//
// pad the entries so that we compare rounds to themselves:
//
for(INT_LIST_I it=allIndices.begin();it!=allIndices.end();
++it){
unsigned int sz=cipEntries[*it].size();
if(sz<longestEntry){
cipEntries[*it].insert(cipEntries[*it].end(),
longestEntry-sz,
-1);
}
}
// ----------------------------------------------------
//
// sort the new ranks and update the list of active indices:
//
lastNumRanks=numRanks;
RankAtoms::sortAndRankVect(numAtoms,cipEntries,allIndices,ranks);
RankAtoms::updateInPlayIndices(ranks,activeIndices);
numRanks = *std::max_element(ranks.begin(),ranks.end())+1;
++numIts;
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "strings and ranks:" << std::endl;
for(int i=0;i<numAtoms;i++){
BOOST_LOG(rdDebugLog) << i << ": " << ranks[i] << " > ";
debugVect(cipEntries[i]);
}
#endif
}
}
// Figure out the CIP ranks for the atoms of a molecule
void assignAtomCIPRanks(const ROMol &mol, INT_VECT &ranks){
PRECONDITION((!ranks.size() || ranks.size()>=mol.getNumAtoms()),
"bad ranks size");
if(!ranks.size()) ranks.resize(mol.getNumAtoms());
int numAtoms = mol.getNumAtoms();
// get the initial invariants:
DOUBLE_VECT invars(numAtoms,0);
buildCIPInvariants(mol,invars);
iterateCIPRanks(mol,invars,ranks,false);
// copy the ranks onto the atoms:
for(int i=0;i<numAtoms;i++){
mol.getAtomWithIdx(i)->setProp("_CIPRank",ranks[i],1);
}
}
// construct a vector with <atomIdx,direction> pairs for
// neighbors of a given atom. This list will only be
// non-empty if at least one of the bonds has its direction
// set.
void findAtomNeighborDirHelper(const ROMol &mol,const Atom *atom,
const Bond *refBond,
INT_VECT &ranks,
INT_PAIR_VECT &neighbors,
bool& hasExplicitUnknownStereo){
PRECONDITION(atom,"bad atom");
PRECONDITION(refBond,"bad bond");
bool seenDir=false;
ROMol::OEDGE_ITER beg,end;
boost::tie(beg,end) = mol.getAtomBonds(atom);
while(beg!=end){
const BOND_SPTR bond = mol[*beg];
// check whether this bond is explictly set to have unknown stereo
if (!hasExplicitUnknownStereo) {
if (bond->hasProp("_UnknownStereo")) {
int unknownStereo = 0;
bond->getProp("_UnknownStereo", unknownStereo);
if (unknownStereo)
hasExplicitUnknownStereo = true;
}
}
Bond::BondDir dir=bond->getBondDir();
if( bond->getIdx() != refBond->getIdx()){
if(dir == Bond::ENDDOWNRIGHT || dir == Bond::ENDUPRIGHT){
seenDir=true;
// If we're considering the bond "backwards", (i.e. from end
// to beginning, reverse the effective direction:
if(atom != bond->getBeginAtom()){
if(dir==Bond::ENDDOWNRIGHT) dir=Bond::ENDUPRIGHT;
else dir=Bond::ENDDOWNRIGHT;
}
}
Atom *nbrAtom=bond->getOtherAtom(atom);
neighbors.push_back( std::make_pair(nbrAtom->getIdx(), dir) );
}
++beg;
}
if(!seenDir) {
neighbors.clear();
} else {
if( neighbors.size() == 2 &&
ranks[neighbors[0].first] == ranks[neighbors[1].first] ){
// the two substituents are identical, no stereochemistry here:
neighbors.clear();
} else {
// it's possible that direction was set only one of the bonds, set the other
// bond's direction to be reversed:
if( neighbors[0].second != Bond::ENDDOWNRIGHT &&
neighbors[0].second != Bond::ENDUPRIGHT ){
CHECK_INVARIANT(neighbors.size()>1,"too few neighbors");
neighbors[0].second =
neighbors[1].second==Bond::ENDDOWNRIGHT ? Bond::ENDUPRIGHT : Bond::ENDDOWNRIGHT;
} else if ( neighbors.size()>1 &&
neighbors[1].second != Bond::ENDDOWNRIGHT &&
neighbors[1].second != Bond::ENDUPRIGHT ){
neighbors[1].second =
neighbors[0].second==Bond::ENDDOWNRIGHT ? Bond::ENDUPRIGHT : Bond::ENDDOWNRIGHT;
}
}
}
}
// find the neighbors for an atoms that are not connected by single bond that is not refBond
// if checkDir is true only neighbor atoms with bonds marked with a direction will be returned
void findAtomNeighborsHelper(const ROMol &mol,const Atom *atom,const Bond *refBond,
INT_VECT &neighbors, bool checkDir=false) {
PRECONDITION(atom,"bad atom");
PRECONDITION(refBond,"bad bond");
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
const BOND_SPTR bond=mol[*beg];
Bond::BondDir dir = bond->getBondDir();
if (bond->getBondType()==Bond::SINGLE && bond->getIdx() != refBond->getIdx()) {
if (checkDir) {
if ((dir != Bond::ENDDOWNRIGHT) && (dir != Bond::ENDUPRIGHT)) {
++beg;
continue;
}
}
Atom *nbrAtom = bond->getOtherAtom(atom);
neighbors.push_back(nbrAtom->getIdx());
}
++beg;
}
}
bool atomIsCandidateForRingStereochem(const ROMol &mol,const Atom *atom){
PRECONDITION(atom,"bad atom");
bool res=false;
if(atom->hasProp("_ringStereochemCand")){
atom->getProp("_ringStereochemCand",res);
} else {
const RingInfo *ringInfo=mol.getRingInfo();
if(ringInfo->isInitialized() &&
ringInfo->numAtomRings(atom->getIdx())){
ROMol::OEDGE_ITER beg,end;
boost::tie(beg,end) = mol.getAtomBonds(atom);
std::vector<const Atom *> nonRingNbrs;
std::vector<const Atom *> ringNbrs;
while(beg!=end){
const BOND_SPTR bond=mol[*beg];
if(!ringInfo->numBondRings(bond->getIdx())){
nonRingNbrs.push_back(bond->getOtherAtom(atom));
} else {
ringNbrs.push_back(bond->getOtherAtom(atom));
}
++beg;
}
int rank1=0,rank2=0;
switch(nonRingNbrs.size()){
case 0:
// don't do spiro:
res=false;
break;
case 1:
if(ringNbrs.size()==2) res=true;
break;
case 2:
if( nonRingNbrs[0]->hasProp("_CIPRank") &&
nonRingNbrs[1]->hasProp("_CIPRank") ){
nonRingNbrs[0]->getProp("_CIPRank",rank1);
nonRingNbrs[1]->getProp("_CIPRank",rank2);
if(rank1==rank2){
res=false;
} else {
res=true;
}
}
break;
default:
res=false;
}
}
atom->setProp("_ringStereochemCand",res,1);
}
return res;
}
// returns true if the atom is allowed to have stereochemistry specified
bool checkChiralAtomSpecialCases(ROMol &mol,const Atom *atom){
PRECONDITION(atom,"bad atom");
if(!mol.getRingInfo()->isInitialized()){
VECT_INT_VECT sssrs;
MolOps::symmetrizeSSSR(mol, sssrs);
}
const RingInfo *ringInfo=mol.getRingInfo();
if(ringInfo->numAtomRings(atom->getIdx()) &&
atomIsCandidateForRingStereochem(mol,atom) ){
// the atom is in a ring, so the "chirality" specification may actually
// be handling ring stereochemistry.
// check for another chiral tagged
// atom without stereochem in this atom's rings:
INT_VECT ringStereoAtoms;
if(atom->hasProp("_ringStereoAtoms")){
atom->getProp("_ringStereoAtoms",ringStereoAtoms);
}
const VECT_INT_VECT atomRings=ringInfo->atomRings();
for(VECT_INT_VECT::const_iterator ringIt=atomRings.begin();
ringIt!=atomRings.end();++ringIt){
if(std::find(ringIt->begin(),ringIt->end(),
static_cast<int>(atom->getIdx()))!=ringIt->end()){
for(INT_VECT::const_iterator idxIt=ringIt->begin();
idxIt!=ringIt->end();++idxIt){
int same=1;
if(*idxIt!=static_cast<int>(atom->getIdx()) &&
mol.getAtomWithIdx(*idxIt)->getChiralTag()!=Atom::CHI_UNSPECIFIED &&
!mol.getAtomWithIdx(*idxIt)->hasProp("_CIPCode") &&
atomIsCandidateForRingStereochem(mol,mol.getAtomWithIdx(*idxIt)) ){
// we get to keep the stereochem specification on this atom:
if(mol.getAtomWithIdx(*idxIt)->getChiralTag()!=atom->getChiralTag()){
same=-1;
}
ringStereoAtoms.push_back(same*(*idxIt+1));
INT_VECT oAtoms;
if(mol.getAtomWithIdx(*idxIt)->hasProp("_ringStereoAtoms")){
mol.getAtomWithIdx(*idxIt)->getProp("_ringStereoAtoms",oAtoms);
}
oAtoms.push_back(same*(atom->getIdx()));
mol.getAtomWithIdx(*idxIt)->setProp("_ringStereoAtoms",oAtoms);
}
}
}
}
atom->setProp("_ringStereoAtoms",ringStereoAtoms);
if(ringStereoAtoms.size()){
return true;
}
}
return false;
}
std::pair<bool,bool> isAtomPotentialChiralCenter(const Atom *atom,const ROMol &mol,const INT_VECT &ranks,
Chirality::INT_PAIR_VECT &nbrs){
// loop over all neighbors and form a decorated list of their
// ranks:
bool legalCenter=true;
bool hasDupes=false;
if(atom->getTotalDegree()>4){
// we only know tetrahedral chirality
legalCenter=false;
} else {
boost::dynamic_bitset<> codesSeen(mol.getNumAtoms());
ROMol::OEDGE_ITER beg,end;
boost::tie(beg,end) = mol.getAtomBonds(atom);
while(beg!=end){
unsigned int otherIdx=mol[*beg]->getOtherAtom(atom)->getIdx();
CHECK_INVARIANT(ranks[otherIdx]<static_cast<int>(mol.getNumAtoms()),
"CIP rank higher than the number of atoms.");
// watch for neighbors with duplicate ranks, which would mean
// that we cannot be chiral:
if(codesSeen[ranks[otherIdx]]){
// we've already seen this code, it's a dupe
hasDupes = true;
break;
}
codesSeen[ranks[otherIdx]]=1;
nbrs.push_back(std::make_pair(ranks[otherIdx],
mol[*beg]->getIdx()));
++beg;
}
// figure out if this is a legal chiral center or not:
if(!hasDupes){
if(nbrs.size()<3){
// less than three neighbors is never stereogenic
legalCenter=false;
} else if(nbrs.size()==3){
// three-coordinate with a single H we'll accept automatically:
if(atom->getTotalNumHs()!=1){
// otherwise we default to not being a legal center
legalCenter=false;
// but there are a few special cases we'll accept
// sulfur or selenium with either a positive charge or a double bond:
if((atom->getAtomicNum()==16||atom->getAtomicNum()==34) &&
(atom->getExplicitValence()==4 ||
(atom->getExplicitValence()==3 && atom->getFormalCharge()==1))) {
legalCenter=true;
}
}
}
}
}
return std::make_pair(legalCenter,hasDupes);
}
// returns a pair:
// 1) are there unassigned stereoatoms
// 2) did we assign any?
std::pair<bool,bool> assignAtomChiralCodes(ROMol &mol,INT_VECT &ranks,
bool flagPossibleStereoCenters){
PRECONDITION( (!ranks.size() || ranks.size()==mol.getNumAtoms()),
"bad rank vector size");
bool atomChanged=false;
unsigned int unassignedAtoms=0;
// ------------------
// now loop over each atom and, if it's marked as chiral,
// figure out the appropriate CIP label:
for(ROMol::AtomIterator atIt=mol.beginAtoms();
atIt!=mol.endAtoms();++atIt){
Atom *atom=*atIt;
Atom::ChiralType tag=atom->getChiralTag();
// only worry about this atom if it has a marked chirality
// we understand:
if(flagPossibleStereoCenters || (tag != Atom::CHI_UNSPECIFIED &&
tag != Atom::CHI_OTHER) ){
if(atom->hasProp("_CIPCode")){
continue;
}
if(!ranks.size()){
// if we need to, get the "CIP" ranking of each atom:
assignAtomCIPRanks(mol,ranks);
}
Chirality::INT_PAIR_VECT nbrs;
bool legalCenter,hasDupes;
boost::tie(legalCenter,hasDupes)=isAtomPotentialChiralCenter(atom,mol,ranks,nbrs);
if(legalCenter){
++unassignedAtoms;
}
if(legalCenter && !hasDupes && flagPossibleStereoCenters){
atom->setProp("_ChiralityPossible",1);
}
if( legalCenter && !hasDupes &&
tag != Atom::CHI_UNSPECIFIED &&
tag != Atom::CHI_OTHER ) {
// stereochem is possible and we have no duplicate neighbors, assign
// a CIP code:
atomChanged=true;
--unassignedAtoms;
// sort the list of neighbors by their CIP ranks:
std::sort(nbrs.begin(),nbrs.end(),Chirality::_pairComp);
// collect the list of neighbor indices:
std::list<int> nbrIndices;
for(Chirality::INT_PAIR_VECT_CI nbrIt=nbrs.begin();
nbrIt!=nbrs.end(); ++nbrIt){
nbrIndices.push_back((*nbrIt).second);
}
// ask the atom how many swaps we have to make:
int nSwaps = atom->getPerturbationOrder(nbrIndices);
// if the atom has 3 neighbors and a hydrogen, add a swap:
if(nbrIndices.size()==3 && atom->getTotalNumHs()==1){
++nSwaps;
}
// if that number is odd, we'll change our chirality:
if(nSwaps%2){
if(tag == Atom::CHI_TETRAHEDRAL_CCW) tag=Atom::CHI_TETRAHEDRAL_CW;
else tag=Atom::CHI_TETRAHEDRAL_CCW;
}
// now assign the CIP code:
std::string cipCode;
if(tag==Atom::CHI_TETRAHEDRAL_CCW) cipCode="S";
else cipCode="R";
atom->setProp("_CIPCode",cipCode,true);
}
}
}
return std::make_pair((unassignedAtoms>0),atomChanged);
}
// returns a pair:
// 1) are there unassigned stereo bonds?
// 2) did we assign any?
std::pair<bool,bool> assignBondStereoCodes(ROMol &mol,INT_VECT &ranks){
PRECONDITION( (!ranks.size() || ranks.size()==mol.getNumAtoms()),
"bad rank vector size");
bool assignedABond=false;
unsigned int unassignedBonds=0;
// find the double bonds:
for(ROMol::BondIterator bondIt=mol.beginBonds();
bondIt!=mol.endBonds();
++bondIt){
if( (*bondIt)->getBondType()==Bond::DOUBLE ){
Bond *dblBond=*bondIt;
if(dblBond->getStereo()!=Bond::STEREONONE){
continue;
}
if(!ranks.size()){
assignAtomCIPRanks(mol,ranks);
}
dblBond->getStereoAtoms().clear();
// at the moment we are ignoring stereochem on ring bonds.
if(!mol.getRingInfo()->numBondRings(dblBond->getIdx()) ||
mol.getRingInfo()->minBondRingSize(dblBond->getIdx())>7 ){
const Atom *begAtom=dblBond->getBeginAtom();
const Atom *endAtom=dblBond->getEndAtom();
// we're only going to handle 2 or three coordinate atoms:
if( (begAtom->getDegree()==2 || begAtom->getDegree()==3) &&
(endAtom->getDegree()==2 || endAtom->getDegree()==3) ){
++unassignedBonds;
// look around each atom and see if it has at least one bond with
// direction marked:
// the pairs here are: atomrank,bonddir
Chirality::INT_PAIR_VECT begAtomNeighbors,endAtomNeighbors;
bool hasExplicitUnknownStereo = false;
Chirality::findAtomNeighborDirHelper(mol,begAtom,dblBond,
ranks,begAtomNeighbors,
hasExplicitUnknownStereo);
Chirality::findAtomNeighborDirHelper(mol,endAtom,dblBond,
ranks,endAtomNeighbors,
hasExplicitUnknownStereo);
if(begAtomNeighbors.size() && endAtomNeighbors.size()){
// Each atom has at least one neighboring bond with marked
// directionality. Find the highest-ranked directionality
// on each side:
int begDir,endDir, endNbrAid, begNbrAid;
if(begAtomNeighbors.size()==1 ||
ranks[begAtomNeighbors[0].first] >
ranks[begAtomNeighbors[1].first] ){
begDir = begAtomNeighbors[0].second;
begNbrAid = begAtomNeighbors[0].first;
} else {
begDir = begAtomNeighbors[1].second;
begNbrAid = begAtomNeighbors[1].first;
}
if(endAtomNeighbors.size()==1 ||
ranks[endAtomNeighbors[0].first] >
ranks[endAtomNeighbors[1].first]){
endDir = endAtomNeighbors[0].second;
endNbrAid = endAtomNeighbors[0].first;
} else {
endDir = endAtomNeighbors[1].second;
endNbrAid = endAtomNeighbors[1].first;
}
dblBond->getStereoAtoms().push_back(begNbrAid);
dblBond->getStereoAtoms().push_back(endNbrAid);
if (hasExplicitUnknownStereo) {
dblBond->setStereo(Bond::STEREOANY);
assignedABond=true;
}
else if( begDir == endDir ){
// In findAtomNeighborDirHelper, we've set up the
// bond directions here so that they correspond to
// having both single bonds START at the double bond.
// This means that if the single bonds point in the same
// direction, the bond is cis, "Z"
dblBond->setStereo(Bond::STEREOZ);
assignedABond=true;
} else {
dblBond->setStereo(Bond::STEREOE);
assignedABond=true;
}
--unassignedBonds;
}
}
}
}
}
return std::make_pair(unassignedBonds>0,assignedABond);
}
// reassign atom ranks by supplementing the current ranks
// with information about known chirality
void rerankAtoms(const ROMol &mol, INT_VECT &ranks) {
PRECONDITION(ranks.size()==mol.getNumAtoms(),"bad rank vector size");
PRECONDITION(mol.getNumAtoms()<1000,"cannot deal with more than 1000 atoms");
unsigned int factor=100;
while(factor<mol.getNumAtoms()) factor*=10;
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "rerank PRE: " << std::endl;
for(int i=0;i<mol.getNumAtoms();i++){
BOOST_LOG(rdDebugLog) << " "<< i << ": " << ranks[i] << std::endl;
}
#endif
DOUBLE_VECT invars(mol.getNumAtoms());
// and now supplement them:
for(unsigned int i=0;i<mol.getNumAtoms();++i){
invars[i] = ranks[i]*factor;
const Atom *atom=mol.getAtomWithIdx(i);
// Priority order: R > S > nothing
if(atom->hasProp("_CIPCode")){
std::string cipCode;
atom->getProp("_CIPCode",cipCode);
if(cipCode=="S"){
invars[i]+=10;
} else if(cipCode=="R"){
invars[i]+=20;
}
}
ROMol::OEDGE_ITER beg,end;
boost::tie(beg,end) = mol.getAtomBonds(atom);
while(beg!=end){
const BOND_SPTR oBond=mol[*beg];
if(oBond->getBondType()==Bond::DOUBLE){
if(oBond->getStereo()==Bond::STEREOE){
invars[i]+=1;
} else if(oBond->getStereo()==Bond::STEREOZ){
invars[i]+=2;
}
}
++beg;
}
}
iterateCIPRanks(mol,invars,ranks,true);
// copy the ranks onto the atoms:
for(unsigned int i=0;i<mol.getNumAtoms();i++){
mol.getAtomWithIdx(i)->setProp("_CIPRank",ranks[i],1);
}
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << " post: " << std::endl;
for(int i=0;i<mol.getNumAtoms();i++){
BOOST_LOG(rdDebugLog) << " "<< i << ": " << ranks[i] << std::endl;
}
#endif
}
} // end of chirality namespace
namespace MolOps {
/*
We're going to do this iteratively:
1) assign atom stereochemistry
2) assign bond stereochemistry
3) if there are still unresolved atoms or bonds
repeat the above steps as necessary
*/
void assignStereochemistry(ROMol &mol,bool cleanIt,bool force,bool flagPossibleStereoCenters){
if(!force && mol.hasProp("_StereochemDone")){
return;
}
// later we're going to need ring information, get it now if we don't
// have it already:
if(!mol.getRingInfo()->isInitialized()){
MolOps::symmetrizeSSSR(mol);
}
#if 0
std::cerr<<">>>>>>>>>>>>>\n";
std::cerr<<"assign stereochem\n";
mol.debugMol(std::cerr);
#endif
if(cleanIt){
for(ROMol::AtomIterator atIt=mol.beginAtoms();
atIt!=mol.endAtoms();++atIt){
if((*atIt)->hasProp("_CIPCode")){
(*atIt)->clearProp("_CIPCode");
}
}
for(ROMol::BondIterator bondIt=mol.beginBonds();
bondIt!=mol.endBonds();
++bondIt){
if( (*bondIt)->getBondType()==Bond::DOUBLE &&
(*bondIt)->getStereo() != Bond::STEREOANY ){
(*bondIt)->setStereo(Bond::STEREONONE);
(*bondIt)->getStereoAtoms().clear();
}
}
}
INT_VECT atomRanks;
bool keepGoing=true;
bool hasStereoAtoms=true,changedStereoAtoms;
bool hasStereoBonds=true,changedStereoBonds;
while(keepGoing){
if(hasStereoAtoms){
boost::tie(hasStereoAtoms,changedStereoAtoms) = Chirality::assignAtomChiralCodes(mol,atomRanks,
flagPossibleStereoCenters);
} else {
changedStereoAtoms=false;
}
if(hasStereoBonds){
boost::tie(hasStereoBonds,changedStereoBonds) = Chirality::assignBondStereoCodes(mol,atomRanks);
} else {
changedStereoBonds=false;
}
keepGoing=(hasStereoAtoms||hasStereoBonds) && (changedStereoAtoms||changedStereoBonds);
if(keepGoing){
// update the atom ranks based on the new information we have:
Chirality::rerankAtoms(mol,atomRanks);
}
#if 0
std::cout<<"*************** done iteration "<<keepGoing<<" ***********"<<std::endl;
mol.debugMol(std::cout);
std::cout<<"*************** done iteration "<<keepGoing<<" ***********"<<std::endl;
#endif
}
if(cleanIt){
for(ROMol::AtomIterator atIt=mol.beginAtoms();
atIt!=mol.endAtoms();++atIt){
Atom *atom=*atIt;
if(atom->getChiralTag()!=Atom::CHI_UNSPECIFIED
&& !atom->hasProp("_CIPCode") &&
!Chirality::checkChiralAtomSpecialCases(mol,atom) ){
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
// If the atom has an explicit hydrogen and no charge, that H
// was probably put there solely because of the chirality.
// So we'll go ahead and remove it.
// This was Issue 194
if(atom->getNumExplicitHs()==1 &&
atom->getFormalCharge()==0 &&
!atom->getIsAromatic() ){
atom->setNumExplicitHs(0);
atom->setNoImplicit(false);
atom->calcExplicitValence(false);
atom->calcImplicitValence(false);
}
}
}
}
mol.setProp("_StereochemDone",1,true);
#if 0
std::cerr<<"---\n";
mol.debugMol(std::cerr);
std::cerr<<"<<<<<<<<<<<<<<<<\n";
#endif
}
// Find bonds than can be cis/trans in a molecule and mark them as "any"
// - this function finds any double bonds that can potentially be part
// of a cis/trans system. No attempt is made here to mark them cis or trans
//
// This function is useful in two situations
// 1) when parsing a mol file; for the bonds marked here, coordinate informations
// on the neighbors can be used to indentify cis or trans states
// 2) when writing a mol file; bonds that can be cis/trans but not marked as either
// need to be specially marked in the mol file
//
// The CIPranks on the neighboring atoms are check in this function. The _CIPCode property
// if set to any on the double bond.
//
// ARGUMENTS:
// mol - the molecule of interest
// cleanIt - if this option is set to true, any previous marking of _CIPCode
// on the bond is cleared - otherwise it is left untouched
void findPotentialStereoBonds(ROMol &mol,bool cleanIt) {
// FIX: The earlier thought was to provide an optional argument to ignore or consider
// double bonds in a ring. But I am removing this optional argument and ignoring ring bonds
// completely for now. This is because finding a potential stereo bond in a ring involves
// more than just checking the CIPranks for the neighbors - SP 05/04/04
// make this function callable multiple times
if ((mol.hasProp("_BondsPotentialStereo")) && (!cleanIt)) {
return;
} else {
INT_VECT ranks;
ranks.resize(mol.getNumAtoms());
bool cipDone=false;
ROMol::BondIterator bondIt;
for(bondIt=mol.beginBonds(); bondIt!=mol.endBonds(); ++bondIt){
if( (*bondIt)->getBondType()==Bond::DOUBLE &&
!(mol.getRingInfo()->numBondRings((*bondIt)->getIdx())) ) {
// we are ignoring ring bonds here - read the FIX above
Bond *dblBond=*bondIt;
// if the bond is flagged as EITHERDOUBLE, we ignore it:
if(dblBond->getBondDir()==Bond::EITHERDOUBLE ||
dblBond->getStereo()==Bond::STEREOANY ){
break;
}
// proceed only if we either want to clean the stereocode on this bond
// or if none is set on it yet
if ( cleanIt || dblBond->getStereo()==Bond::STEREONONE ) {
dblBond->setStereo(Bond::STEREONONE);
const Atom *begAtom=dblBond->getBeginAtom(),*endAtom=dblBond->getEndAtom();
// we're only going to handle 2 or three coordinate atoms:
if( (begAtom->getDegree()==2 || begAtom->getDegree()==3) &&
(endAtom->getDegree()==2 || endAtom->getDegree()==3) ){
// ------------------
// get the CIP ranking of each atom if we need it:
if(!cipDone){
Chirality::assignAtomCIPRanks(mol,ranks);
cipDone=true;
}
// find the neighbors for the begin atom and the endAtom
INT_VECT begAtomNeighbors,endAtomNeighbors;
Chirality::findAtomNeighborsHelper(mol,begAtom,dblBond,begAtomNeighbors);
Chirality::findAtomNeighborsHelper(mol,endAtom,dblBond,endAtomNeighbors);
if(begAtomNeighbors.size()>0 && endAtomNeighbors.size()>0){
if ((begAtomNeighbors.size() == 2) && (endAtomNeighbors.size() == 2) ) {
// if both of the atoms have 2 neighbors (other than the one connected
// by the double bond) and ....
if ( (ranks[begAtomNeighbors[0]] != ranks[begAtomNeighbors[1]]) &&
(ranks[endAtomNeighbors[0]] != ranks[endAtomNeighbors[1]]) ) {
// the neighbors ranks are different at both the ends,
// this bond can be part of a cis/trans system
if(ranks[begAtomNeighbors[0]] > ranks[begAtomNeighbors[1]]){
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(begAtomNeighbors[1]);
}
if(ranks[endAtomNeighbors[0]] > ranks[endAtomNeighbors[1]]){
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(endAtomNeighbors[1]);
}
}
} else if (begAtomNeighbors.size() == 2) {
// if the begAtom has two neighbors and ....
if (ranks[begAtomNeighbors[0]] != ranks[begAtomNeighbors[1]]) {
// their ranks are different
if(ranks[begAtomNeighbors[0]] > ranks[begAtomNeighbors[1]]){
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(begAtomNeighbors[1]);
}
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
}
} else if (endAtomNeighbors.size() == 2) {
// if the endAtom has two neighbors and ...
if (ranks[endAtomNeighbors[0]] != ranks[endAtomNeighbors[1]]) {
// their ranks are different
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
if(ranks[endAtomNeighbors[0]] > ranks[endAtomNeighbors[1]]){
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(endAtomNeighbors[1]);
}
}
} else {
// end and beg atoms has only one neighbor each, it doesn't matter what the ranks are:
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
} // end of different number of neighbors on beg and end atoms
} // end of check that beg and end atoms have at least 1 neighbor:
}// end of 2 and 3 coordinated atoms only
} // end of we want it or CIP code is not set
} // end of double bond
} // end of for loop over all bonds
mol.setProp("_BondsPotentialStereo", 1, true);
}
}
// removes chirality markers from sp and sp2 hybridized centers:
void cleanupChirality(RWMol &mol){
for(ROMol::AtomIterator atomIt=mol.beginAtoms();
atomIt!=mol.endAtoms();
++atomIt){
if( (*atomIt)->getChiralTag()!=Atom::CHI_UNSPECIFIED &&
(*atomIt)->getHybridization() < Atom::SP3 ){
(*atomIt)->setChiralTag(Atom::CHI_UNSPECIFIED);
}
}
}
void assignChiralTypesFrom3D(ROMol &mol,int confId,bool replaceExistingTags){
const double ZERO_VOLUME_TOL=0.1;
if(!mol.getNumConformers()) return;
const Conformer &conf=mol.getConformer(confId);
if(!conf.is3D()) return;
// if the molecule already has stereochemistry
// perceived, remove the flags that indicate
// this... what we're about to do will require
// that we go again.
if(mol.hasProp("_StereochemDone")){
mol.clearProp("_StereochemDone");
}
for(ROMol::AtomIterator atomIt=mol.beginAtoms();atomIt!=mol.endAtoms();++atomIt){
Atom *atom=*atomIt;
// if we aren't replacing existing tags and the atom is already tagged, punt:
if(!replaceExistingTags && atom->getChiralTag()!=Atom::CHI_UNSPECIFIED){
continue;
}
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
// additional reasons to skip the atom:
if(atom->getDegree()<3 || // not enough explicit neighbors
atom->getTotalDegree()!=4 || // not enough total neighbors
atom->getTotalNumHs(true)>1 // more than two Hs
){
continue;
}
const RDGeom::Point3D &p0=conf.getAtomPos(atom->getIdx());
ROMol::ADJ_ITER nbrIdx,endNbrs;
boost::tie(nbrIdx,endNbrs) = mol.getAtomNeighbors(atom);
const RDGeom::Point3D &p1=conf.getAtomPos(*nbrIdx);
++nbrIdx;
const RDGeom::Point3D &p2=conf.getAtomPos(*nbrIdx);
++nbrIdx;
const RDGeom::Point3D &p3=conf.getAtomPos(*nbrIdx);
RDGeom::Point3D v1=p1-p0;
RDGeom::Point3D v2=p2-p0;
RDGeom::Point3D v3=p3-p0;
double chiralVol= v1.dotProduct(v2.crossProduct(v3));
if(chiralVol<-ZERO_VOLUME_TOL){
atom->setChiralTag(Atom::CHI_TETRAHEDRAL_CW);
} else if (chiralVol>ZERO_VOLUME_TOL){
atom->setChiralTag(Atom::CHI_TETRAHEDRAL_CCW);
} else {
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
}
}
}
void removeStereochemistry(ROMol &mol){
if(mol.hasProp("_StereochemDone")){
mol.clearProp("_StereochemDone");
}
for(ROMol::AtomIterator atIt=mol.beginAtoms();
atIt!=mol.endAtoms();++atIt){
(*atIt)->setChiralTag(Atom::CHI_UNSPECIFIED);
if((*atIt)->hasProp("_CIPCode")){
(*atIt)->clearProp("_CIPCode");
}
if((*atIt)->hasProp("_CIPRank")){
(*atIt)->clearProp("_CIPRank");
}
}
for(ROMol::BondIterator bondIt=mol.beginBonds();
bondIt!=mol.endBonds();
++bondIt){
if( (*bondIt)->getBondType()==Bond::DOUBLE ){
(*bondIt)->setStereo(Bond::STEREONONE);
(*bondIt)->getStereoAtoms().clear();
} else if( (*bondIt)->getBondType()==Bond::SINGLE ){
(*bondIt)->setBondDir(Bond::NONE);
}
}
}
} // end of namespace MolOps
} // end of namespace RDKit
|