File: MolOps.cpp

package info (click to toggle)
rdkit 201203-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 37,840 kB
  • sloc: cpp: 93,902; python: 51,897; java: 5,192; ansic: 3,497; xml: 2,499; sql: 1,641; yacc: 1,518; lex: 1,076; makefile: 325; fortran: 183; sh: 153; cs: 51
file content (420 lines) | stat: -rw-r--r-- 15,049 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// $Id: MolOps.cpp 1979 2012-02-27 12:21:23Z glandrum $
//
//  Copyright (C) 2001-2010 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <GraphMol/GraphMol.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/Atom.h>
#include <GraphMol/AtomIterators.h>
#include <GraphMol/BondIterators.h>
#include <GraphMol/PeriodicTable.h>

#include <vector>
#include <algorithm> 

#include <boost/graph/connected_components.hpp>
#include <boost/graph/kruskal_min_spanning_tree.hpp>
#include <boost/graph/johnson_all_pairs_shortest.hpp>
#include <boost/version.hpp>
#if BOOST_VERSION >= 104000
#include <boost/property_map/property_map.hpp>
#else
#include <boost/property_map.hpp>
#endif

#include <boost/config.hpp>
#include <boost/graph/adjacency_list.hpp>

const int ci_LOCAL_INF=static_cast<int>(1e8);

namespace RDKit{
  namespace MolOps {
    void cleanUp(RWMol &mol) {
      ROMol::AtomIterator ai; 
      int aid;
      bool aromHolder;
      for (ai = mol.beginAtoms(); ai != mol.endAtoms(); ++ai) {
        switch( (*ai)->getAtomicNum() ){
        case 7:
          // convert neutral 5 coordinate Ns with double bonds to Os to the
          // zwitterionic form.  e.g.:
          //  CN(=O)=O -> C[N+](=O)[O-]
          // and:
          //  C1=CC=CN(=O)=C1 -> C1=CC=C[N+]([O-])=C1

          // we only want to do neutrals so that things like this don't get
          // munged: 
          //  O=[n+]1occcc1
          // this was sf.net issue 1811276
          if((*ai)->getFormalCharge()){
            continue;
          }

          // we need to play this little aromaticity game because the
          // explicit valence code modifies its results for aromatic
          // atoms.
          aromHolder = (*ai)->getIsAromatic();
          (*ai)->setIsAromatic(0);
          // NOTE that we are calling calcExplicitValence() here, we do
          // this because we cannot be sure that it has already been
          // called on the atom (cleanUp() gets called pretty early in
          // the sanitization process):
          if((*ai)->calcExplicitValence(false)==5 ) {
            aid = (*ai)->getIdx();
            RWMol::ADJ_ITER nid1,end1;
            boost::tie(nid1, end1) = mol.getAtomNeighbors(*ai);
            while (nid1 != end1) {
              if ((mol.getAtomWithIdx(*nid1)->getAtomicNum() == 8) &&
                  (mol.getBondBetweenAtoms(aid, *nid1)->getBondType() == Bond::DOUBLE)) {
                // here's the double bonded oxygen
                Bond *b = mol.getBondBetweenAtoms(aid, *nid1);
                b->setBondType(Bond::SINGLE);
                (*ai)->setFormalCharge(1);
                mol.getAtomWithIdx(*nid1)->setFormalCharge(-1);
                break;
              }
              nid1++;
            } // end of loop over the first neigh
          } // if this atom is 5 coordinate nitrogen
          // force a recalculation of the explicit valence here
          (*ai)->setIsAromatic(aromHolder);
          (*ai)->calcExplicitValence(false);
          break;
        case 17:
          // recognize perchlorate and convert it from:
          //    Cl(=O)(=O)(=O)[O-]
          // to:
          //    [Cl+3]([O-])([O-])([O-])[O-]
          if((*ai)->calcExplicitValence(false)==7 && (*ai)->getFormalCharge()==0){
            aid = (*ai)->getIdx();
            bool neighborsAllO=true;
            RWMol::ADJ_ITER nid1,end1;
            boost::tie(nid1, end1) = mol.getAtomNeighbors(*ai);
            while (nid1 != end1) {
              if(mol.getAtomWithIdx(*nid1)->getAtomicNum() != 8){
                neighborsAllO = false;
                break;
              }
              nid1++;
            }
            if(neighborsAllO){
              (*ai)->setFormalCharge(3);
              boost::tie(nid1, end1) = mol.getAtomNeighbors(*ai);
              while (nid1 != end1) {
                Bond *b = mol.getBondBetweenAtoms(aid, *nid1);
                if(b->getBondType()==Bond::DOUBLE){
                  b->setBondType(Bond::SINGLE);
                  Atom *otherAtom=mol.getAtomWithIdx(*nid1);
                  otherAtom->setFormalCharge(-1);
                  otherAtom->calcExplicitValence(false);
                }
                nid1++;
              }
              (*ai)->calcExplicitValence(false);
            }
          }
          break;
        }
      }
    }
                
    void adjustHs(RWMol &mol) {
      //
      //  Go through and adjust the number of implicit and explicit Hs
      //  on each atom in the molecule.
      //
      //  Atoms that do not *need* explicit Hs
      //
      //  Assumptions: this is called after the molecule has been
      //  sanitized, aromaticity has been perceived, and the implicit
      //  valence of everything has been calculated.
      //
      for (ROMol::AtomIterator ai = mol.beginAtoms();
	   ai != mol.endAtoms(); ++ai) {
        int origImplicitV = (*ai)->getImplicitValence();
        (*ai)->calcExplicitValence();
        int origExplicitV = (*ai)->getNumExplicitHs();
        
        int newImplicitV = (*ai)->calcImplicitValence();
        //
        //  Case 1: The disappearing Hydrogen
        //    Smiles:  O=C1NC=CC2=C1C=CC=C2
        //
        //    after perception is done, the N atom has two aromatic
        //    bonds to it and a single implict H.  When the Smiles is
        //    written, we get: n1ccc2ccccc2c1=O.  Here the nitrogen has
        //    no implicit Hs (because there are two aromatic bonds to
        //    it, giving it a valence of 3).  Also: this SMILES is bogus
        //    (un-kekulizable).  The correct SMILES would be:
        //    [nH]1ccc2ccccc2c1=O.  So we need to loop through the atoms
        //    and find those that have lost implicit H; we'll add those
        //    back as explict Hs.
        //
        //    <phew> that takes way longer to comment than it does to
        //    write:
        if(newImplicitV < origImplicitV){
          (*ai)->setNumExplicitHs(origExplicitV+(origImplicitV-newImplicitV));
          (*ai)->calcExplicitValence();
        }
      }
    }

    void assignRadicals(RWMol &mol){
      for (ROMol::AtomIterator ai = mol.beginAtoms();
           ai != mol.endAtoms(); ++ai) {
        // we only put automatically assign radicals to things that
        // don't have them already and don't have implicit Hs:
        if( !(*ai)->getNoImplicit() || (*ai)->getNumRadicalElectrons() || !(*ai)->getAtomicNum()){
          continue;
        }
        double accum = 0.0;
        RWMol::OEDGE_ITER beg,end;
        boost::tie(beg,end) = mol.getAtomBonds(*ai);
        while(beg!=end){
          accum += mol[*beg]->getValenceContrib(*ai);
          ++beg;
        }
        accum += (*ai)->getNumExplicitHs();
        int totalValence = static_cast<int>(accum+0.1);
        int chg = (*ai)->getFormalCharge();
        int nOuter = PeriodicTable::getTable()->getNouterElecs((*ai)->getAtomicNum());
        int baseCount=8;
        if((*ai)->getAtomicNum()==1){
          baseCount=2;
        }

        // applies to later (more electronegative) elements:
        int numRadicals = std::max(baseCount - nOuter - totalValence + chg,0);
        // applies to earlier elements:
        int numRadicals2 = nOuter - totalValence - chg;
        if(numRadicals2>=0){
          numRadicals = std::min(numRadicals,numRadicals2);
        }
        (*ai)->setNumRadicalElectrons(numRadicals);
      }
    }
                
    void sanitizeMol(RWMol &mol){
      unsigned int failedOp=0;
      sanitizeMol(mol,failedOp,SANITIZE_ALL);
    }
    void sanitizeMol(RWMol &mol,
                     unsigned int &operationThatFailed,
                     unsigned int sanitizeOps){
      // clear out any cached properties
      mol.clearComputedProps();

      operationThatFailed=SANITIZE_CLEANUP;
      if(sanitizeOps & operationThatFailed){
        // clean up things like nitro groups
        cleanUp(mol);
      }

      // update computed properties on atoms and bonds:
      operationThatFailed = SANITIZE_PROPERTIES;
      if(sanitizeOps & operationThatFailed){
        mol.updatePropertyCache(true);
      } else {
        mol.updatePropertyCache(false);
      }
               
      operationThatFailed = SANITIZE_SYMMRINGS;
      if(sanitizeOps & operationThatFailed){
        VECT_INT_VECT arings;
        MolOps::symmetrizeSSSR(mol, arings);
      }

      // kekulizations
      operationThatFailed = SANITIZE_KEKULIZE;
      if(sanitizeOps & operationThatFailed){
        Kekulize(mol);
      }

      // look for radicals:
      // We do this now because we need to know
      // that the N in [N]1C=CC=C1 has a radical
      // before we move into setAromaticity().
      // It's important that this happen post-Kekulization
      // because there's no way of telling what to do 
      // with the same molecule if it's in the form
      // [n]1cccc1
      operationThatFailed = SANITIZE_FINDRADICALS;
      if(sanitizeOps & operationThatFailed){
        assignRadicals(mol);
      }
      
      // then do aromaticity perception
      operationThatFailed = SANITIZE_SETAROMATICITY;
      if(sanitizeOps & operationThatFailed){
        setAromaticity(mol);
      }
    
      // set conjugation
      operationThatFailed = SANITIZE_SETCONJUGATION;
      if(sanitizeOps & operationThatFailed){
        setConjugation(mol);
      }
    
      // set hybridization
      operationThatFailed = SANITIZE_SETHYBRIDIZATION;
      if(sanitizeOps & operationThatFailed){
        setHybridization(mol);
      }

      // remove bogus chirality specs:
      operationThatFailed = SANITIZE_CLEANUPCHIRALITY;
      if(sanitizeOps & operationThatFailed){
        cleanupChirality(mol);
      }

      // adjust Hydrogen counts:
      operationThatFailed = SANITIZE_ADJUSTHS;
      if(sanitizeOps & operationThatFailed){
        adjustHs(mol);
      }

      operationThatFailed = 0;
    }

    std::vector<ROMOL_SPTR> getMolFrags(const ROMol &mol,bool sanitizeFrags,
                                        INT_VECT *frags){
      bool ownIt=false;
      INT_VECT *mapping;
      if(frags){
        mapping=frags;
      } else {
        mapping = new INT_VECT;
        ownIt=true;
      }
      unsigned int nFrags=getMolFrags(mol,*mapping);
      std::vector<ROMOL_SPTR> res;
      if(nFrags==1){
        ROMol *tmp=new ROMol(mol);
        ROMOL_SPTR sptr(tmp);
        res.push_back(sptr);
      } else {
        res.reserve(nFrags);
        for(unsigned int fragIdx=0;fragIdx<nFrags;++fragIdx){
          // copy the molecule, then remove the atoms that
          // aren't in this fragment
          RWMol *tmp=new RWMol(mol);
          // loop over the atoms backwards so that indices
          // stay valid:
          for(int i=mol.getNumAtoms()-1;i>=0;--i){
            if((*mapping)[i]!=static_cast<int>(fragIdx)) tmp->removeAtom(i);
          }
          if(sanitizeFrags) sanitizeMol(*tmp);
          ROMOL_SPTR sptr(static_cast<ROMol *>(tmp));
          res.push_back(sptr);
        }
      }
      if(ownIt){
        delete mapping;
      }
      return res;
    }

    unsigned int getMolFrags(const ROMol &mol, INT_VECT &mapping) {
      mapping.resize(mol.getNumAtoms());
      return boost::connected_components(mol.getTopology(),&mapping[0]);
    };

    unsigned int getMolFrags(const ROMol &mol, VECT_INT_VECT &frags) {
      frags.clear();
      INT_VECT mapping;
      getMolFrags(mol, mapping);
  
      INT_INT_VECT_MAP comMap;
      for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
        int mi = mapping[i];
        if(comMap.find(mi)==comMap.end()){
          INT_VECT comp;
          comMap[mi] = comp;
        }
        comMap[mi].push_back(i);
      }

      for (INT_INT_VECT_MAP_CI mci = comMap.begin();
               mci != comMap.end();
               mci++) {
           frags.push_back((*mci).second);
      }
      return frags.size();
    }
#if 0
    void findSpanningTree(const ROMol &mol,INT_VECT &mst){
      //
      //  The BGL provides Prim's and Kruskal's algorithms for finding
      //  the MST of a graph.  Prim's is O(n2) (n=# of atoms) while
      //  Kruskal's is O(e log e) (e=# of bonds).  For molecules, where
      //  e << n2, Kruskal's should be a win.
      //
      const MolGraph *mgraph = &mol.getTopology();
      MolGraph *molGraph = const_cast<MolGraph *> (mgraph);
    
      std::vector<MolGraph::edge_descriptor> treeEdges;
      treeEdges.reserve(boost::num_vertices(*molGraph));
    
      boost::property_map < MolGraph, edge_wght_t >::type w = boost::get(edge_wght_t(), *molGraph);
      boost::property_map < MolGraph, edge_bond_t>::type bps = boost::get(edge_bond_t(), *molGraph);
      boost::graph_traits < MolGraph >::edge_iterator e, e_end;
      Bond* bnd;
      for (boost::tie(e, e_end) = boost::edges(*molGraph); e != e_end; ++e) {
        bnd = bps[*e];
      
        if(!bnd->getIsAromatic()){
          w[*e] = (bnd->getBondTypeAsDouble());
        } else {
          w[*e] = 3.0/2.0;
        }
      }
    
      // FIX: this is a hack due to problems with MSVC++
#if 1
      typedef boost::graph_traits<MolGraph>::vertices_size_type size_type;
      typedef boost::graph_traits<MolGraph>::vertex_descriptor vertex_t;
      typedef boost::property_map<MolGraph,boost::vertex_index_t>::type index_map_t;
      boost::graph_traits<MolGraph>::vertices_size_type
        n = boost::num_vertices(*molGraph);
      std::vector<size_type> rank_map(n);
      std::vector<vertex_t> pred_map(n);

      boost::detail::kruskal_mst_impl
        (*molGraph, std::back_inserter(treeEdges),
         boost::make_iterator_property_map(rank_map.begin(),
                                           boost::get(boost::vertex_index, *molGraph),
                                           rank_map[0]),
         boost::make_iterator_property_map(pred_map.begin(),
                                           boost::get(boost::vertex_index, *molGraph),
                                           pred_map[0]),
         w);
  
#else  
      boost::kruskal_minimum_spanning_tree(*molGraph,std::back_inserter(treeEdges),
                                           w, *molGraph);
      //boost::weight_map(static_cast<boost::property_map<MolGraph,edge_wght_t>::const_type>(boost::get(edge_wght_t(),*molGraph))));
#endif
      mst.resize(0);
      for(std::vector<MolGraph::edge_descriptor>::iterator edgeIt=treeEdges.begin();
          edgeIt!=treeEdges.end();edgeIt++){
        mst.push_back(mol[*edgeIt]->getIdx());
      }
    }
#endif
    int getFormalCharge(const ROMol &mol){
      int accum = 0;
      for(ROMol::ConstAtomIterator atomIt=mol.beginAtoms();
          atomIt!=mol.endAtoms();
          ++atomIt){
        accum += (*atomIt)->getFormalCharge();
      }
      return accum;
    };
  }; // end of namespace MolOps
}; // end of namespace RDKit