File: GettingStartedInPython.rst

package info (click to toggle)
rdkit 201203-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 37,840 kB
  • sloc: cpp: 93,902; python: 51,897; java: 5,192; ansic: 3,497; xml: 2,499; sql: 1,641; yacc: 1,518; lex: 1,076; makefile: 325; fortran: 183; sh: 153; cs: 51
file content (1749 lines) | stat: -rw-r--r-- 68,543 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

Getting Started with the RDKit in Python
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



What is this?
*************

This document is intended to provide an overview of how one can use
the RDKit functionality from Python.  It's not comprehensive and it's
not a manual.

If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: rdkit-devel@lists.sourceforge.net


Reading and Writing Molecules
*****************************

Reading single molecules
========================

The majority of the basic molecular functionality is found in module :api:`rdkit.Chem`:

>>> from rdkit import Chem

Individual molecules can be constructed using a variety of approaches:

>>> m = Chem.MolFromSmiles('Cc1ccccc1')
>>> m = Chem.MolFromMolFile('data/input.mol')
>>> stringWithMolData=file('data/input.mol','r').read()
>>> m = Chem.MolFromMolBlock(stringWithMolData)

All of these functions return a :api:`rdkit.Chem.rdchem.Mol` object on success:

>>> m
<rdkit.Chem.rdchem.Mol object at 0x...>

or None on failure:

>>> m = Chem.MolFromMolFile('data/invalid.mol')
>>> m is None
True

An attempt is made to provide sensible error messages:

>>> m1 = Chem.MolFromSmiles('CO(C)C')

displays a message like: ``[12:18:01] Explicit valence for atom # 1 O greater than permitted`` and

>>> m2 = Chem.MolFromSmiles('c1cc1')

displays something like: ``[12:20:41] Can't kekulize mol``. In each case the value ``None`` is returned:

>>> m1 is None
True
>>> m2 is None
True


Reading sets of molecules
=========================

Groups of molecules are read using a Supplier (for example, an :api:`rdkit.Chem.rdmolfiles.SDMolSupplier` or a :api:`rdkit.Chem.rdmolfiles.SmilesMolSupplier`):

>>> suppl = Chem.SDMolSupplier('data/5ht3ligs.sdf')
>>> for mol in suppl:
...   print mol.GetNumAtoms()
...
20
24
24
26

You can easily produce lists of molecules from a Supplier:

>>> mols = [x for x in suppl]
>>> len(mols)
4

or just treat the Supplier itself as a random-access object:

>>> suppl[0].GetNumAtoms()
20

A good practice is to test each molecule to see if it was correctly read before working with it: 

>>> suppl = Chem.SDMolSupplier('data/5ht3ligs.sdf')
>>> for mol in suppl:
...   if mol is None: continue
...   print mol.GetNumAtoms()
...
20
24
24
26

An alternate type of Supplier, the :api:`rdkit.Chem.rdmolfiles.ForwardSDMolSupplier` can be used to read from file-like objects:

>>> inf = file('data/5ht3ligs.sdf')
>>> fsuppl = Chem.ForwardSDMolSupplier(inf)
>>> for mol in fsuppl:
...   if mol is None: continue
...   print mol.GetNumAtoms()
...
20
24
24
26

Note that ForwardSDMolSuppliers cannot be used as random-access objects:

>>> fsuppl[0]
Traceback (most recent call last):
  ...
TypeError: 'ForwardSDMolSupplier' object does not support indexing


Writing molecules
=================

Single molecules can be converted to text using several functions present in the :api:`rdkit.Chem` module.

For example, for SMILES:

>>> m = Chem.MolFromMolFile('data/chiral.mol')
>>> Chem.MolToSmiles(m)
'CC(O)c1ccccc1'
>>> Chem.MolToSmiles(m,isomericSmiles=True)
'C[C@H](O)c1ccccc1'

Note that the SMILES provided is canonical, so the output should be the same no matter how a particular molecule is input:

>>> Chem.MolToSmiles(Chem.MolFromSmiles('C1=CC=CN=C1'))
'c1ccncc1'
>>> Chem.MolToSmiles(Chem.MolFromSmiles('c1cccnc1'))
'c1ccncc1'
>>> Chem.MolToSmiles(Chem.MolFromSmiles('n1ccccc1'))
'c1ccncc1'

If you'd like to have the Kekule form of the SMILES, first Kekulize the molecule, then use the “kekuleSmiles” option:

>>> Chem.Kekulize(m)
>>> Chem.MolToSmiles(m,kekuleSmiles=True)
'CC(O)C1=CC=CC=C1'

Note: as of this writing (Aug 2008), the smiles provided when one requests kekuleSmiles are not canonical.
The limitation is not in the SMILES generation, but in the kekulization itself.

MDL Mol blocks are also available:

>>> m2 = Chem.MolFromSmiles('C1CCC1')
>>> print Chem.MolToMolBlock(m2)    # doctest: +NORMALIZE_WHITESPACE
<BLANKLINE>
     RDKit
<BLANKLINE>
  4  4  0  0  0  0  0  0  0  0999 V2000
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  1  0
  2  3  1  0
  3  4  1  0
  4  1  1  0
M  END
<BLANKLINE>

To include names in the mol blocks, set the molecule's “_Name” property:

>>> m2.SetProp("_Name","cyclobutane")
>>> print Chem.MolToMolBlock(m2)     # doctest: +NORMALIZE_WHITESPACE
cyclobutane
     RDKit          
<BLANKLINE>
  4  4  0  0  0  0  0  0  0  0999 V2000
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  1  0
  2  3  1  0
  3  4  1  0
  4  1  1  0
M  END
<BLANKLINE>

It's usually preferable to have a depiction in the Mol block, this can
be generated using functionality in the :api:`rdkit.Chem.AllChem`
module (see the `Chem vs AllChem`_ section for more information).  

You can either include 2D coordinates (i.e. a depiction):

>>> from rdkit.Chem import AllChem
>>> AllChem.Compute2DCoords(m2)
0
>>> print Chem.MolToMolBlock(m2)     # doctest: +NORMALIZE_WHITESPACE
cyclobutane 
     RDKit          2D 
<BLANKLINE>
  4  4  0  0  0  0  0  0  0  0999 V2000 
    1.0607   -0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -0.0000   -1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
   -1.0607    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
    0.0000    1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 
  1  2  1  0 
  2  3  1  0 
  3  4  1  0 
  4  1  1  0 
M  END
<BLANKLINE>

Or you can add 3D coordinates by embedding the molecule:

>>> AllChem.EmbedMolecule(m2)
0
>>> AllChem.UFFOptimizeMolecule(m2)
0
>>> print Chem.MolToMolBlock(m2)    # doctest: +NORMALIZE_WHITESPACE
cyclobutane
     RDKit          3D
<BLANKLINE>
  4  4  0  0  0  0  0  0  0  0999 V2000
   -0.7931    0.5732   -0.2708 C   0  0  0  0  0  0  0  0  0  0  0  0
   -0.3802   -0.9196   -0.2340 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.7838   -0.5392    0.6548 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.3894    0.8856    0.6202 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  1  0
  2  3  1  0
  3  4  1  0
  4  1  1  0
M  END
<BLANKLINE>

The optimization step isn't necessary, but it substantially improves the quality of the conformation.

If you'd like to write the molecules to a file, use Python file objects:

>>> print >>file('data/foo.mol','w+'),Chem.MolToMolBlock(m2)
>>>


Writing sets of molecules
=========================

Multiple molecules can be written to a file using an :api:`rdkit.Chem.rdmolfiles.SDWriter` object:

>>> w = Chem.SDWriter('data/foo.sdf')
>>> for m in mols: w.write(m)
...
>>>

An SDWriter can also be initialized using a file-like object:

>>> from StringIO import StringIO
>>> sio = StringIO()
>>> w = Chem.SDWriter(sio)
>>> for m in mols: w.write(m)
...
>>> w.flush()
>>> print sio.getvalue()
mol-295
     RDKit          3D
<BLANKLINE>
 20 22  0  0  0  0  0  0  0  0999 V2000
    2.3200    0.0800   -0.1000 C   0  0  0  0  0  0  0  0  0  0  0  0
    1.8400   -1.2200    0.1200 C   0  0  0  0  0  0  0  0  0  0  0  0
...
  1  3  1  0
  1  4  1  0
  2  5  1  0
M  END
$$$$
<BLANKLINE>



Other available Writers include the :api:`rdkit.Chem.rdmolfiles.SmilesWriter` and the :api:`rdkit.Chem.rdmolfiles.TDTWriter`.


Working with Molecules
**********************


Looping over Atoms and Bonds
============================

Once you have a molecule, it's easy to loop over its atoms and bonds:

>>> m = Chem.MolFromSmiles('C1OC1')
>>> for atom in m.GetAtoms():
...   print atom.GetAtomicNum()
...
6
8
6
>>> print m.GetBonds()[0].GetBondType()
SINGLE

You can also request individual bonds or atoms:

>>> m.GetAtomWithIdx(0).GetSymbol()
'C'
>>> m.GetAtomWithIdx(0).GetExplicitValence()
2
>>> m.GetBondWithIdx(0).GetBeginAtomIdx()
0
>>> m.GetBondWithIdx(0).GetEndAtomIdx()
1
>>> m.GetBondBetweenAtoms(0,1).GetBondType()
rdkit.Chem.rdchem.BondType.SINGLE

Atoms keep track of their neighbors:

>>> atom = m.GetAtomWithIdx(0)
>>> [x.GetAtomicNum() for x in atom.GetNeighbors()]
[8, 6]
>>> len(x.GetBonds())
2


Ring Information
================

Atoms and bonds both carry information about the molecule's rings:

>>> m = Chem.MolFromSmiles('OC1C2C1CC2')
>>> m.GetAtomWithIdx(0).IsInRing()
False
>>> m.GetAtomWithIdx(1).IsInRing()
True
>>> m.GetAtomWithIdx(2).IsInRingSize(3)
True
>>> m.GetAtomWithIdx(2).IsInRingSize(4)
True
>>> m.GetAtomWithIdx(2).IsInRingSize(5)
False
>>> m.GetBondWithIdx(1).IsInRingSize(3)
True
>>> m.GetBondWithIdx(1).IsInRing()
True

But note that the information is only about the smallest rings:

>>> m.GetAtomWithIdx(1).IsInRingSize(5)
False

More detail about the smallest set of smallest rings (SSSR) is available:

>>> ssr = Chem.GetSymmSSSR(m)
>>> len(ssr)
2
>>> list(ssr[0])
[1, 2, 3]
>>> list(ssr[1])
[4, 5, 2, 3]

As the name indicates, this is a symmetrized SSSR; if you are interested in the number of “true” SSSR, use the GetSSSR function.


>>> Chem.GetSSSR(m)
2

The distinction between symmetrized and non-symmetrized SSSR is discussed in more detail below in the section `The SSSR Problem`_.

For more efficient queries about a molecule's ring systems (avoiding repeated calls to Mol.GetAtomWithIdx), use the :api:`rdkit.Chem.rdchem.RingInfo` class:

>>> m = Chem.MolFromSmiles('OC1C2C1CC2') 
>>> ri = m.GetRingInfo() 
>>> ri.NumAtomRings(0) 
0 
>>> ri.NumAtomRings(1) 
1 
>>> ri.NumAtomRings(2) 
2 
>>> ri.IsAtomInRingOfSize(1,3) 
True 
>>> ri.IsBondInRingOfSize(1,3) 
True 


Modifying molecules
===================

Normally molecules are stored in the RDKit with the hydrogen atoms implicit (e.g. not explicitly present in the molecular graph.
When it is useful to have the hydrogens explicitly present, for example when generating or optimizing the 3D geometry, the :api:`rdkit.Chem.rdmolops.AddHs` function can be used:

>>> m=Chem.MolFromSmiles('CCO')
>>> m.GetNumAtoms()
3
>>> m2 = Chem.AddHs(m)
>>> m2.GetNumAtoms()
9

The Hs can be removed again using the :api:`rdkit.Chem.rdmolops.RemoveHs` function:

>>> m3 = Chem.RemoveHs(m2)
>>> m3.GetNumAtoms()
3

RDKit molecules are usually stored with the bonds in aromatic rings having aromatic bond types.
This can be changed with the :api:`rdkit.Chem.rdmolops.Kekulize` function:

>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.AROMATIC
>>> Chem.Kekulize(m)
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.DOUBLE
>>> m.GetBondWithIdx(1).GetBondType()
rdkit.Chem.rdchem.BondType.SINGLE

The bonds are still marked as being aromatic:

>>> m.GetBondWithIdx(1).GetIsAromatic()
True

and can be restored to the aromatic bond type using the :api:`rdkit.Chem.rdmolops.SanitizeMol` function:

>>> Chem.SanitizeMol(m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.AROMATIC


Working with 2D molecules: Generating Depictions
================================================

The RDKit has a library for generating depictions (sets of 2D) coordinates for molecules.
This library, which is part of the AllChem module, is accessed using the :api:`rdkit.Chem.rdDepictor.Compute2DCoords` function:

>>> m = Chem.MolFromSmiles('c1nccc2n1ccc2')
>>> AllChem.Compute2DCoords(m)
0

The 2D conformation is constructed in a canonical orientation and is
built to minimize intramolecular clashes, i.e. to maximize the clarity
of the drawing.

If you have a set of molecules that share a common template and you'd
like to align them to that template, you can do so as follows:

>>> template = Chem.MolFromSmiles('c1nccc2n1ccc2')
>>> AllChem.Compute2DCoords(template)
0
>>> AllChem.GenerateDepictionMatching2DStructure(m,template)

Running this process for a couple of other molecules gives the
following depictions:

+---------------+---------------+---------------+
| |picture_1|   | |picture_0|   | |picture_3|   |
+---------------+---------------+---------------+

Another option for Compute2DCoords allows you to generate 2D depictions for molecules that closely mimic 3D conformations.
This is available using the function :api:`rdkit.Chem.AllChem.GenerateDepictionMatching3DStructure`.

Here is an illustration of the results using the ligand from PDB structure 1XP0:

+---------------+---------------+
| |picture_2|   | |picture_4|   |
+---------------+---------------+

More fine-grained control can be obtained using the core function
:api:`rdkit.Chem.rdDepictor.Compute2DCoordsMimicDistmat`, but that is
beyond the scope of this document.  See the implementation of
GenerateDepictionMatching3DStructure in AllChem.py for an example of
how it is used.


Working with 3D Molecules
=========================

The RDKit can generate conformations for molecules using distance geometry. [#blaney]_
The algorithm followed is:

1. The molecule's distance bounds matrix is calculated based on the connection table and a set of rules.

2. The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.

3. A random distance matrix that satisfies the bounds matrix is generated.

4. This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).

5. The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.

Multiple conformations can be generated by repeating steps 4 and 5 several times, using a different random distance matrix each time.

Note that the conformations that result from this procedure tend to be fairly ugly.
They should be cleaned up using a force field.
This can be done within the RDKit using its implementation of the Universal Force Field (UFF). [#rappe]_


The full process of embedding and optimizing a molecule is easier than all the above verbiage makes it sound:

>>> m = Chem.MolFromSmiles('C1CCC1OC')
>>> m2=Chem.AddHs(m)
>>> AllChem.EmbedMolecule(m2)
0
>>> AllChem.UFFOptimizeMolecule(m2)
0

*Disclaimer/Warning*: Conformation generation is a difficult and subtle task.
The 2D->3D conversion provided within the RDKit is not intended to be a replacement for a “real” conformational analysis tool; it merely provides quick 3D structures for cases when they are required.


Preserving Molecules
====================

Molecules can be converted to and from text using Python's pickling machinery:

>>> m = Chem.MolFromSmiles('c1ccncc1')
>>> import cPickle
>>> pkl = cPickle.dumps(m)
>>> type(pkl)
<type 'str'>
>>> m2=cPickle.loads(pkl)
>>> Chem.MolToSmiles(m2)
'c1ccncc1'

The RDKit pickle format is fairly compact and it is much, much faster to build a molecule from a pickle than from a Mol file or SMILES string, so storing molecules you will be working with repeatedly as pickles can be a good idea.

The raw binary data that is encapsulated in a pickle can also be directly obtained from a molecule:

>>> binStr = m.ToBinary()

This can be used to reconstruct molecules using the Chem.Mol constructor:

>>> m2 = Chem.Mol(binStr)
>>> Chem.MolToSmiles(m2)
'c1ccncc1'
>>> len(binStr)
123
>>> len(pkl)
475

Note that this huge difference in text length is because we didn't tell python to use its most efficient representation of the pickle:

>>> pkl = cPickle.dumps(m,2)
>>> len(pkl)
157

The small overhead associated with python's pickling machinery normally doesn't end up making much of a difference for collections of larger molecules (the extra data associated with the pickle is independent of the size of the molecule, while the binary string increases in length as the molecule gets larger).

*Tip*: The performance difference associated with storing molecules in a pickled form on disk instead of constantly reparsing an SD file or SMILES table is difficult to overstate.
In a test I just ran on my laptop, loading a set of 699 drug-like molecules from an SD file took 10.8 seconds; loading the same molecules from a pickle file took 0.7 seconds.
The pickle file is also smaller – 1/3 the size of the SD file – but this difference is not always so dramatic (it's a particularly fat SD file).


Substructure Searching
**********************

Substructure matching can be done using query molecules built from SMARTS:

>>> m = Chem.MolFromSmiles('c1ccccc1O')
>>> patt = Chem.MolFromSmarts('ccO')
>>> m.HasSubstructMatch(patt)
True
>>> m.GetSubstructMatch(patt)
(0, 5, 6) 

Those are the atom indices in ``m``, ordered as ``patt``'s atoms. To get all of the matches:

>>> m.GetSubstructMatches(patt)
((0, 5, 6), (4, 5, 6)) 

This can be used to easily filter lists of molecules:

>>> suppl = Chem.SDMolSupplier('data/actives_5ht3.sdf')
>>> patt = Chem.MolFromSmarts('c[NH1]')
>>> matches = []
>>> for mol in suppl:
...   if mol.HasSubstructMatch(patt):
...     matches.append(mol)
...
>>> len(matches)
22

We can write the same thing more compactly using Python's list comprehension syntax:

>>> matches = [x for x in suppl if x.HasSubstructMatch(patt)]
>>> len(matches)
22

Substructure matching can also be done using molecules built from SMILES instead of SMARTS:

>>> m = Chem.MolFromSmiles('C1=CC=CC=C1OC')
>>> m.HasSubstructMatch(Chem.MolFromSmarts('CO'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmiles('CO'))
True

But don't forget that the semantics of the two languages are not exactly equivalent:

>>> m.HasSubstructMatch(Chem.MolFromSmiles('COC'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmarts('COC'))
False
>>> m.HasSubstructMatch(Chem.MolFromSmarts('COc')) #<- need an aromatic C
True

There's also functionality for using the substructure machinery for doing quick molecular transformations.
These transformations include deleting substructures:

>>> m = Chem.MolFromSmiles('CC(=O)O')
>>> patt = Chem.MolFromSmarts('C(=O)[OH]')
>>> rm = AllChem.DeleteSubstructs(m,patt)
>>> Chem.MolToSmiles(rm)
'C'

replacing substructures:

>>> repl = Chem.MolFromSmiles('OC')
>>> patt = Chem.MolFromSmarts('[$(NC(=O))]')
>>> m = Chem.MolFromSmiles('CC(=O)N')
>>> rms = AllChem.ReplaceSubstructs(m,patt,repl)
>>> rms
(<rdkit.Chem.rdchem.Mol object at 0x...>,)
>>> Chem.MolToSmiles(rms[0])
'COC(=O)C'

as well as simple SAR-table transformations like removing side chains:

>>> m1 = Chem.MolFromSmiles('BrCCc1cncnc1C(=O)O')
>>> core = Chem.MolFromSmiles('c1cncnc1')
>>> tmp = Chem.ReplaceSidechains(m1,core)
>>> Chem.MolToSmiles(tmp)
'[*]c1cncnc1[*]' 

and removing cores:

>>> tmp = Chem.ReplaceCore(m1,core)
>>> Chem.MolToSmiles(tmp)
'[*]CCBr.[*]C(=O)O' 

To get more detail about the sidechains (e.g. sidechain labels), use isomeric smiles:

>>> Chem.MolToSmiles(tmp,True)
'[1*]CCBr.[2*]C(=O)O' 

By default the sidechains are labeled based on the order they are found.
They can also be labeled according by the number of that core-atom they're attached to:

>>> m1 = Chem.MolFromSmiles('c1c(CCO)ncnc1C(=O)O')
>>> tmp=Chem.ReplaceCore(m1,core,labelByIndex=True)
>>> Chem.MolToSmiles(tmp,True)
'[1*]CCO.[5*]C(=O)O'

:api:`rdkit.Chem.rdmolops.ReplaceCore` returns the sidechains in a single molecule.
This can be split into separate molecules using :api:`rdkit.Chem.rdmolops.GetMolFrags` :

>>> rs = Chem.GetMolFrags(tmp,asMols=True)
>>> len(rs)
2
>>> Chem.MolToSmiles(rs[0],True)
'[1*]CCO'
>>> Chem.MolToSmiles(rs[1],True)
'[5*]C(=O)O'

Note that these transformation functions are intended to provide an easy way to make simple modifications to molecules.
For more complex transformations, use the `Chemical Reactions`_ functionality.


Fingerprinting and Molecular Similarity
***************************************

The RDKit has a variety of built-in functionality for generating molecular fingerprints and using them to calculate molecular similarity.


Topological Fingerprints
========================

>>> from rdkit import DataStructs
>>> from rdkit.Chem.Fingerprints import FingerprintMols
>>> ms = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO'),
... Chem.MolFromSmiles('COC')]
>>> fps = [FingerprintMols.FingerprintMol(x) for x in ms]
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1])
0.666...
>>> DataStructs.FingerprintSimilarity(fps[0],fps[2])
0.444...
>>> DataStructs.FingerprintSimilarity(fps[1],fps[2])
0.25

The fingerprinting algorithm used is similar to that used in the
Daylight fingerprinter: it identifies and hashes topological paths
(e.g. along bonds) in the molecule and then uses them to set bits in a
fingerprint of user-specified lengths. After all paths have been identified, the fingerprint is typically folded down until a particular density of set bits is obtained.

The default set of parameters used by the fingerprinter is:
- minimum path size: 1 bond
- maximum path size: 7 bonds
- fingerprint size: 2048 bits
- number of bits set per hash: 2
- minimum fingerprint size: 64 bits
- target on-bit density 0.3

You can control these by calling
:api:`rdkit.Chem.rdmolops.RDKFingerprint` directly; this will return
an unfolded fingerprint that you can then fold to the desired density.
The function
:api:`rdkit.Chem.Fingerprints.FingerprintMols.FingerprintMol` (written
in python) shows how this is done.

The default similarity metric used by
:api:`rdkit.DataStructs.FingerprintSimilarity` is the Tanimoto
similarity.  One can use different similarity metrics:

>>> DataStructs.FingerprintSimilarity(fps[0],fps[1], metric=DataStructs.DiceSimilarity)
0.800...

Available similarity metrics include Tanimoto, Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky.


MACCS Keys
==========

There is a SMARTS-based implementation of the 166 public MACCS keys.

>>> from rdkit.Chem import MACCSkeys
>>> fps = [MACCSkeys.GenMACCSKeys(x) for x in ms]
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1])
0.5
>>> DataStructs.FingerprintSimilarity(fps[0],fps[2])
0.538...
>>> DataStructs.FingerprintSimilarity(fps[1],fps[2])
0.214...

The MACCS keys were critically evaluated and compared to other MACCS implementations in Q3 2008. In cases where the public keys are fully defined, things looked pretty good.


Atom Pairs and Topological Torsions
===================================

Atom-pair descriptors [#carhart]_ are available in several different forms.
The standard form is as fingerprint including counts for each bit instead of just zeros and ones:

>>> from rdkit.Chem.AtomPairs import Pairs
>>> ms = [Chem.MolFromSmiles('C1CCC1OCC'),Chem.MolFromSmiles('CC(C)OCC'),Chem.MolFromSmiles('CCOCC')]
>>> pairFps = [Pairs.GetAtomPairFingerprint(x) for x in ms]

Because the space of bits that can be included in atom-pair fingerprints is huge, they are stored in a sparse manner.
We can get the list of bits and their counts for each fingerprint as a dictionary:

>>> d = pairFps[-1].GetNonzeroElements()
>>> d[541732]
1
>>> d[1606690]
2

Descriptions of the bits are also available:

>>> Pairs.ExplainPairScore(558115)
(('C', 1, 0), 3, ('C', 2, 0)) 

The above means: C with 1 neighbor and 0 pi electrons which is 3 bonds
from a C with 2 neighbors and 0 pi electrons

The usual metric for similarity between atom-pair fingerprints is Dice similarity:

>>> from rdkit import DataStructs
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[1])
0.333...
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[2])
0.258...
>>> DataStructs.DiceSimilarity(pairFps[1],pairFps[2])
0.560...

It's also possible to get atom-pair descriptors encoded as a standard
bit vector fingerprint (ignoring the count information):

>>> pairFps = [Pairs.GetAtomPairFingerprintAsBitVect(x) for x in ms]

Since these are standard bit vectors, the :api:`rdkit.DataStructs`
module can be used for similarity:

>>> from rdkit import DataStructs
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[1])
0.479...
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[2])
0.380...
>>> DataStructs.DiceSimilarity(pairFps[1],pairFps[2])
0.625

Topological torsion descriptors [#nilakantan]_ are calculated in
essentially the same way:

>>> from rdkit.Chem.AtomPairs import Torsions
>>> tts = [Torsions.GetTopologicalTorsionFingerprintAsIntVect(x) for x in ms]
>>> DataStructs.DiceSimilarity(tts[0],tts[1])
0.166...

At the time of this writing, topological torsion fingerprints have too many bits to be encodeable using the BitVector machinery, so there is no GetTopologicalTorsionFingerprintAsBitVect function.


Morgan Fingerprints (Circular Fingerprints)
===========================================

This family of fingerprints, better known as circular fingerprints
[#rogers]_, is built by applying the Morgan algorithm to a set of
user-supplied atom invariants.  When generating Morgan fingerprints,
the radius of the fingerprint must also be provided :

>>> from rdkit.Chem import AllChem
>>> m1 = Chem.MolFromSmiles('Cc1ccccc1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2)
>>> fp1
<rdkit.DataStructs.cDataStructs.UIntSparseIntVect object at 0x...>
>>> m2 = Chem.MolFromSmiles('Cc1ncccc1')
>>> fp2 = AllChem.GetMorganFingerprint(m2,2)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.55...

Morgan fingerprints, like atom pairs and topological torsions, use
counts by default, but it's also possible to calculate them as bit
vectors:

>>> fp1 = AllChem.GetMorganFingerprintAsBitVect(m1,2,nBits=1024) 
>>> fp1 
<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...> 
>>> fp2 = AllChem.GetMorganFingerprintAsBitVect(m2,2,nBits=1024) 
>>> DataStructs.DiceSimilarity(fp1,fp2) 
0.51... 

The default atom invariants use connectivity information similar to
those used for the well known ECFP family of fingerprints.
Feature-based invariants, similar to those used for the FCFP
fingerprints, can also be used. The feature definitions used are
defined in the section `Feature Definitions Used in the Morgan
Fingerprints`_.  At times this can lead to quite different similarity
scores:

>>> m1 = Chem.MolFromSmiles('c1ccccn1')
>>> m2 = Chem.MolFromSmiles('c1ccco1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2)
>>> fp2 = AllChem.GetMorganFingerprint(m2,2)
>>> ffp1 = AllChem.GetMorganFingerprint(m1,2,useFeatures=True)
>>> ffp2 = AllChem.GetMorganFingerprint(m2,2,useFeatures=True)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.36...
>>> DataStructs.DiceSimilarity(ffp1,ffp2)
0.90...

When comparing the ECFP/FCFP fingerprints and the Morgan fingerprints
generated by the RDKit, remember that the 4 in ECFP4 corresponds to
the diameter of the atom environments considered, while the Morgan
fingerprints take a radius parameter.  So the examples above, with
radius=2, are roughly equivalent to ECFP4 and FCFP4.

The user can also provide their own atom invariants using the optional
invariants argument to
:api:`rdkit.Chem.rdMolDescriptors.GetMorganFingerprint`.  Here's a
simple example that uses a constant for the invariant; the resulting
fingerprints compare the topology of molecules:

>>> m1 = Chem.MolFromSmiles('Cc1ccccc1')
>>> m2 = Chem.MolFromSmiles('Cc1ncncn1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2,invariants=[1]*m1.GetNumAtoms())
>>> fp2 = AllChem.GetMorganFingerprint(m2,2,invariants=[1]*m2.GetNumAtoms())
>>> fp1==fp2
True

Note that bond order is by default still considered:

>>> m3 = Chem.MolFromSmiles('CC1CCCCC1')
>>> fp3 = AllChem.GetMorganFingerprint(m3,2,invariants=[1]*m3.GetNumAtoms())
>>> fp1==fp3
False

But this can also be turned off:

>>> fp1 = AllChem.GetMorganFingerprint(m1,2,invariants=[1]*m1.GetNumAtoms(),
... useBondTypes=False)
>>> fp3 = AllChem.GetMorganFingerprint(m3,2,invariants=[1]*m3.GetNumAtoms(),
... useBondTypes=False) 
>>> fp1==fp3
True


Explaining bits from Morgan Fingerprints
----------------------------------------

Information is available about the atoms that contribute to particular
bits in the Morgan fingerprint via the bitInfo argument.  The
dictionary provided is populated with one entry per bit set in the
fingerprint, the keys are the bit ids, the values are lists of (atom
index, radius) tuples.


>>> m = Chem.MolFromSmiles('c1cccnc1C')
>>> info={}
>>> fp = AllChem.GetMorganFingerprint(m,2,bitInfo=info)
>>> len(fp.GetNonzeroElements())
16
>>> len(info)
16
>>> info[98513984]
((1, 1), (2, 1))
>>> info[4048591891]
((5, 2),)

Interpreting the above: bit 98513984 is set twice: once by atom 1 and
once by atom 2, each at radius 1. Bit 4048591891 is set once by atom 5
at radius 2.

Focusing on bit 4048591891, we can extract the submolecule consisting
of all atoms within a radius of 2 of atom 5:

>>> env = Chem.FindAtomEnvironmentOfRadiusN(m,2,5)
>>> amap={}
>>> submol=Chem.PathToSubmol(m,env,atomMap=amap)
>>> submol.GetNumAtoms()
6
>>> amap
{0: 3, 1: 5, 3: 4, 4: 0, 5: 1, 6: 2} 

And then “explain” the bit by generating SMILES for that submolecule:

>>> Chem.MolToSmiles(submol) 
'ccc(C)nc'

This is more useful when the SMILES is rooted at the central atom: 

>>> Chem.MolToSmiles(submol,rootedAtAtom=amap[5],canonical=False) 
'c(nc)(C)cc' 


Picking Diverse Molecules Using Fingerprints
============================================

A common task is to pick a small subset of diverse molecules from a
larger set.  The RDKit provides a number of approaches for doing this
in the :api:`rdkit.SimDivFilters` module.  The most efficient of these uses the
MaxMin algorithm. [#ashton]_ Here's an example:

Start by reading in a set of molecules and generating Morgan fingerprints:

>>> from rdkit import Chem
>>> from rdkit.Chem.rdMolDescriptors import GetMorganFingerprint
>>> from rdkit import DataStructs
>>> from rdkit.SimDivFilters.rdSimDivPickers import MaxMinPicker
>>> ms = [x for x in Chem.SDMolSupplier('data/actives_5ht3.sdf')]
>>> while ms.count(None): ms.remove(None)
>>> fps = [GetMorganFingerprint(x,3) for x in ms]
>>> nfps = len(fps)

The algorithm requires a function to calculate distances between
objects, we'll do that using DiceSimilarity:

>>> def distij(i,j,fps=fps):
...   return 1-DataStructs.DiceSimilarity(fps[i],fps[j])

Now create a picker and grab a set of 10 diverse molecules:

>>> picker = MaxMinPicker()
>>> pickIndices = picker.LazyPick(distij,nfps,10,seed=23)
>>> list(pickIndices)
[93, 109, 154, 6, 95, 135, 151, 61, 137, 139]

Note that the picker just returns indices of the fingerprints; we can
get the molecules themselves as follows:

>>> picks = [ms[x] for x in pickIndices]


Descriptor Calculation
**********************

A variety of descriptors are available within the RDKit.
The complete list is provided in `List of Available Descriptors`_.

Most of the descriptors are straightforward to use from Python via the
centralized :api:`rdkit.Chem.Descriptors` module :

>>> from rdkit.Chem import Descriptors
>>> m = Chem.MolFromSmiles('c1ccccc1C(=O)O')
>>> Descriptors.TPSA(m)
37.299...
>>> Descriptors.MolLogP(m)
1.3848

Partial charges are handled a bit differently:

>>> m = Chem.MolFromSmiles('c1ccccc1C(=O)O')
>>> AllChem.ComputeGasteigerCharges(m)
>>> float(m.GetAtomWithIdx(0).GetProp('_GasteigerCharge'))
-0.047...


Chemical Reactions
******************

The RDKit also supports applying chemical reactions to sets of
molecules.  One way of constructing chemical reactions is to use a
SMARTS-based language similar to Daylight's Reaction SMILES
[#rxnsmarts]_:

>>> rxn = AllChem.ReactionFromSmarts('[C:1](=[O:2])-[OD1].[N!H0:3]>>[C:1](=[O:2])[N:3]')
>>> rxn
<rdkit.Chem.rdChemReactions.ChemicalReaction object at 0x...>
>>> rxn.GetNumProductTemplates()
1
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('CC(=O)O'),Chem.MolFromSmiles('NC')))
>>> len(ps) # one entry for each possible set of products
1
>>> len(ps[0]) # each entry contains one molecule for each product
1
>>> Chem.MolToSmiles(ps[0][0])
'CNC(=O)C'
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('C(COC(=O)O)C(=O)O'),Chem.MolFromSmiles('NC')))
>>> len(ps)
2
>>> Chem.MolToSmiles(ps[0][0])
'CNC(OCCC(O)=O)=O'
>>> Chem.MolToSmiles(ps[1][0])
'CNC(CCOC(O)=O)=O'

Reactions can also be built from MDL rxn files:

>>> rxn = AllChem.ReactionFromRxnFile('data/AmideBond.rxn')
>>> rxn.GetNumReactantTemplates()
2
>>> rxn.GetNumProductTemplates()
1
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('CC(=O)O'), Chem.MolFromSmiles('NC')))
>>> len(ps)
1
>>> Chem.MolToSmiles(ps[0][0])
'CNC(=O)C'

It is, of course, possible to do reactions more complex than amide
bond formation:

>>> rxn = AllChem.ReactionFromSmarts('[C:1]=[C:2].[C:3]=[*:4][*:5]=[C:6]>>[C:1]1[C:2][C:3][*:4]=[*:5][C:6]1')
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('OC=C'), Chem.MolFromSmiles('C=CC(N)=C')))
>>> Chem.MolToSmiles(ps[0][0])
'NC1=CCCC(O)C1'

Note in this case that there are multiple mappings of the reactants
onto the templates, so we have multiple product sets:

>>> len(ps)
4

You can use canonical smiles and a python dictionary to get the unique products:

>>> uniqps = {}
>>> for p in ps:
...   smi = Chem.MolToSmiles(p[0])
...   uniqps[smi] = p[0]
...
>>> uniqps.keys()
['NC1=CCC(O)CC1', 'NC1=CCCC(O)C1']

Note that the molecules that are produced by the chemical reaction
processing code are not sanitized, as this artificial reaction
demonstrates:

>>> rxn = AllChem.ReactionFromSmarts('[C:1]=[C:2][C:3]=[C:4].[C:5]=[C:6]>>[C:1]1=[C:2][C:3]=[C:4][C:5]=[C:6]1')
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('C=CC=C'), Chem.MolFromSmiles('C=C')))
>>> Chem.MolToSmiles(ps[0][0])
'C1=CC=CC=C1'
>>> p0 = ps[0][0]
>>> Chem.SanitizeMol(p0)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(p0)
'c1ccccc1'


Recap Implementation
====================

Associated with the chemical reaction functionality is an
implementation of the Recap algorithm. [#lewell]_ Recap uses a set of
chemical transformations mimicking common reactions carried out in the
lab in order to decompose a molecule into a series of reasonable
fragments.

The RDKit :api:`rdkit.Chem.Recap` implementation keeps track of the hierarchy of
transformations that were applied:

>>> from rdkit import Chem
>>> from rdkit.Chem import Recap
>>> m = Chem.MolFromSmiles('c1ccccc1OCCOC(=O)CC')
>>> hierarch = Recap.RecapDecompose(m)
>>> type(hierarch)
<class 'rdkit.Chem.Recap.RecapHierarchyNode'>

The hierarchy is rooted at the original molecule:

>>> hierarch.smiles
'CCC(=O)OCCOc1ccccc1'

and each node tracks its children using a dictionary keyed by SMILES:

>>> ks=hierarch.children.keys()
>>> ks.sort()
>>> ks
['[*]C(=O)CC', '[*]CCOC(=O)CC', '[*]CCOc1ccccc1', '[*]OCCOc1ccccc1', '[*]c1ccccc1']

The nodes at the bottom of the hierarchy (the leaf nodes) are easily
accessible, also as a dictionary keyed by SMILES:

>>> ks=hierarch.GetLeaves().keys()
>>> ks.sort()
>>> ks
['[*]C(=O)CC', '[*]CCO[*]', '[*]CCOc1ccccc1', '[*]c1ccccc1']

Notice that dummy atoms are used to mark points where the molecule was fragmented.

The nodes themselves have associated molecules:

>>> leaf = hierarch.GetLeaves()[ks[0]]
>>> Chem.MolToSmiles(leaf.mol)
'[*]C(=O)CC'


Chemical Features and Pharmacophores
************************************


Chemical Features
=================

Chemical features in the RDKit are defined using a SMARTS-based feature definition language (described in detail in the RDKit book).
To identify chemical features in molecules, you first must build a feature factory:

>>> from rdkit import Chem
>>> from rdkit.Chem import ChemicalFeatures
>>> from rdkit import RDConfig
>>> import os
>>> fdefName = os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef')
>>> factory = ChemicalFeatures.BuildFeatureFactory(fdefName)

and then use the factory to search for features:

>>> m = Chem.MolFromSmiles('OCc1ccccc1CN')
>>> feats = factory.GetFeaturesForMol(m)
>>> len(feats)
8

The individual features carry information about their family (e.g. donor, acceptor, etc.), type (a more detailed description), and the atom(s) that is/are associated with the feature:

>>> feats[0].GetFamily()
'Donor'
>>> feats[0].GetType()
'SingleAtomDonor'
>>> feats[0].GetAtomIds()
(0,)
>>> feats[4].GetFamily()
'Aromatic'
>>> feats[4].GetAtomIds()
(2, 3, 4, 5, 6, 7)

If the molecule has coordinates, then the features will also have reasonable locations:

>>> from rdkit.Chem import AllChem
>>> AllChem.Compute2DCoords(m)
0
>>> feats[0].GetPos()
<rdkit.Geometry.rdGeometry.Point3D object at 0x...>
>>> list(feats[0].GetPos())
[-2.99..., -1.558..., 0.0]


2D Pharmacophore Fingerprints
=============================

Combining a set of chemical features with the 2D (topological)
distances between them gives a 2D pharmacophore.  When the distances
are binned, unique integer ids can be assigned to each of these
pharmacophores and they can be stored in a fingerprint.  Details of
the encoding are in the :doc:`RDKit_Book`.

Generating pharmacophore fingerprints requires chemical features
generated via the usual RDKit feature-typing mechanism:

>>> from rdkit import Chem
>>> from rdkit.Chem import ChemicalFeatures
>>> fdefName = 'data/MinimalFeatures.fdef'
>>> featFactory = ChemicalFeatures.BuildFeatureFactory(fdefName)

The fingerprints themselves are calculated using a signature
(fingerprint) factory, which keeps track of all the parameters
required to generate the pharmacophore:

>>> from rdkit.Chem.Pharm2D.SigFactory import SigFactory
>>> sigFactory = SigFactory(featFactory,minPointCount=2,maxPointCount=3)
>>> sigFactory.SetBins([(0,2),(2,5),(5,8)])
>>> sigFactory.Init()
>>> sigFactory.GetSigSize()
885

The signature factory is now ready to be used to generate
fingerprints, a task which is done using the
:api:`rdkit.Chem.Pharm2D.Generate` module:

>>> from rdkit.Chem.Pharm2D import Generate
>>> mol = Chem.MolFromSmiles('OCC(=O)CCCN')
>>> fp = Generate.Gen2DFingerprint(mol,sigFactory)
>>> fp
<rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...>
>>> len(fp)
885
>>> fp.GetNumOnBits()
57

Details about the bits themselves, including the features that are
involved and the binned distance matrix between the features, can be
obtained from the signature factory:

>>> list(fp.GetOnBits())[:5]
[1, 2, 6, 7, 8]
>>> sigFactory.GetBitDescription(1)
'Acceptor Acceptor |0 1|1 0|'
>>> sigFactory.GetBitDescription(2)
'Acceptor Acceptor |0 2|2 0|'
>>> sigFactory.GetBitDescription(8)
'Acceptor Donor |0 2|2 0|'
>>> list(fp.GetOnBits())[-5:]
[704, 706, 707, 708, 714]
>>> sigFactory.GetBitDescription(707)
'Donor Donor PosIonizable |0 1 2|1 0 1|2 1 0|'
>>> sigFactory.GetBitDescription(714)
'Donor Donor PosIonizable |0 2 2|2 0 0|2 0 0|'

For the sake of convenience (to save you from having to edit the fdef
file every time) it is possible to disable particular feature types
within the SigFactory:

>>> sigFactory.skipFeats=['PosIonizable']
>>> sigFactory.Init()
>>> sigFactory.GetSigSize()
510
>>> fp2 = Generate.Gen2DFingerprint(mol,sigFactory)
>>> fp2.GetNumOnBits()
36

Another possible set of feature definitions for 2D pharmacophore
fingerprints in the RDKit are those published by Gobbi and
Poppinger. [#gobbi]_ The module
:api:`rdkit.Chem.Pharm2D.Gobbi_Pharm2D` has a pre-configured signature
factory for these fingerprint types.  Here's an example of using it:

>>> from rdkit import Chem
>>> from rdkit.Chem.Pharm2D import Gobbi_Pharm2D,Generate
>>> m = Chem.MolFromSmiles('OCC=CC(=O)O')
>>> fp = Generate.Gen2DFingerprint(m,Gobbi_Pharm2D.factory)
>>> fp
<rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...>
>>> fp.GetNumOnBits()
8
>>> list(fp.GetOnBits()) 
[23, 30, 150, 154, 157, 185, 28878, 30184] 
>>> Gobbi_Pharm2D.factory.GetBitDescription(157) 
'HA HD |0 3|3 0|' 
>>> Gobbi_Pharm2D.factory.GetBitDescription(30184) 
'HA HD HD |0 3 0|3 0 3|0 3 0|' 


Molecular Fragments
*******************

The RDKit contains a collection of tools for fragmenting molecules and
working with those fragments.  Fragments are defined to be made up of
a set of connected atoms that may have associated functional groups.
This is more easily demonstrated than explained:

>>> fName=os.path.join(RDConfig.RDDataDir,'FunctionalGroups.txt')
>>> from rdkit.Chem import FragmentCatalog
>>> fparams = FragmentCatalog.FragCatParams(1,6,fName)
>>> fparams.GetNumFuncGroups()
39
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> fcgen=FragmentCatalog.FragCatGenerator()
>>> m = Chem.MolFromSmiles('OCC=CC(=O)O')
>>> fcgen.AddFragsFromMol(m,fcat)
3
>>> fcat.GetEntryDescription(0)
'CC<-O>'
>>> fcat.GetEntryDescription(1)
'C<-C(=O)O>=C'
>>> fcat.GetEntryDescription(2)
'C<-C(=O)O>=CC<-O>'

The fragments are stored as entries in a
:api:`rdkit.Chem.rdfragcatalog.FragCatalog`.  Notice that the
entry descriptions include pieces in angular brackets (e.g. between
'<' and '>').  These describe the functional groups attached to the
fragment.  For example, in the above example, the catalog entry 0
corresponds to an ethyl fragment with an alcohol attached to one of
the carbons and entry 1 is an ethylene with a carboxylic acid on one
carbon.  Detailed information about the functional groups can be
obtained by asking the fragment for the ids of the functional groups
it contains and then looking those ids up in the
:api:`rdkit.Chem.rdfragcatalog.FragCatParams`
object:

>>> list(fcat.GetEntryFuncGroupIds(2))
[34, 1]
>>> fparams.GetFuncGroup(1)
<rdkit.Chem.rdchem.Mol object at 0x...>
>>> Chem.MolToSmarts(fparams.GetFuncGroup(1))
'*-C(=O)-,:[O&D1]'
>>> Chem.MolToSmarts(fparams.GetFuncGroup(34))
'*-[O&D1]'
>>> fparams.GetFuncGroup(1).GetProp('_Name')
'-C(=O)O'
>>> fparams.GetFuncGroup(34).GetProp('_Name')
'-O'

The catalog is hierarchical: smaller fragments are combined to form
larger ones.  From a small fragment, one can find the larger fragments
to which it contributes using the
:api:`rdkit.Chem.rdfragcatalog.FragCatalog.GetEntryDownIds`
method:

>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> m = Chem.MolFromSmiles('OCC(NC1CC1)CCC')
>>> fcgen.AddFragsFromMol(m,fcat)
15
>>> fcat.GetEntryDescription(0)
'CC<-O>'
>>> fcat.GetEntryDescription(1)
'CN<-cPropyl>'
>>> list(fcat.GetEntryDownIds(0))
[3, 4]
>>> fcat.GetEntryDescription(3)
'CCC<-O>'
>>> fcat.GetEntryDescription(4)
'C<-O>CN<-cPropyl>'

The fragments from multiple molecules can be added to a catalog:

>>> suppl = Chem.SmilesMolSupplier('data/bzr.smi')
>>> ms = [x for x in suppl]
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> for m in ms: nAdded=fcgen.AddFragsFromMol(m,fcat)
>>> fcat.GetNumEntries()
1169
>>> fcat.GetEntryDescription(0)
'cC'
>>> fcat.GetEntryDescription(100)
'cc-nc(C)n'

The fragments in a catalog are unique, so adding a molecule a second
time doesn't add any new entries:

>>> fcgen.AddFragsFromMol(ms[0],fcat)
0 
>>> fcat.GetNumEntries()
1169 

Once a :api:`rdkit.Chem.rdfragcatalog.FragCatalog` has been
generated, it can be used to fingerprint molecules:

>>> fpgen = FragmentCatalog.FragFPGenerator()
>>> fp = fpgen.GetFPForMol(ms[8],fcat)
>>> fp
<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...>
>>> fp.GetNumOnBits()
189

The rest of the machinery associated with fingerprints can now be
applied to these fragment fingerprints.  For example, it's easy to
find the fragments that two molecules have in common by taking the
intersection of their fingerprints:

>>> fp2 = fpgen.GetFPForMol(ms[7],fcat)
>>> andfp = fp&fp2
>>> obl = list(andfp.GetOnBits())
>>> fcat.GetEntryDescription(obl[-1])
'ccc(NC<=O>)cc'
>>> fcat.GetEntryDescription(obl[-5])
'c<-X>ccc(N)cc'

or we can find the fragments that distinguish one molecule from
another:

>>> combinedFp=fp&(fp^fp2) # can be more efficent than fp&(!fp2)
>>> obl = list(combinedFp.GetOnBits())
>>> fcat.GetEntryDescription(obl[-1])
'cccc(N)cc'

Or we can use the bit ranking functionality from the
:api:`rdkit.ML.InfoTheory.rdInfoTheory.InfoBitRanker` class to identify fragments
that distinguish actives from inactives:

>>> suppl = Chem.SDMolSupplier('data/bzr.sdf')
>>> sdms = [x for x in suppl]
>>> fps = [fpgen.GetFPForMol(x,fcat) for x in sdms]
>>> from rdkit.ML.InfoTheory import InfoBitRanker
>>> ranker = InfoBitRanker(len(fps[0]),2)
>>> acts = [float(x.GetProp('ACTIVITY')) for x in sdms]
>>> for i,fp in enumerate(fps):
...   act = int(acts[i]>7)
...   ranker.AccumulateVotes(fp,act)
...
>>> top5 = ranker.GetTopN(5)
>>> for id,gain,n0,n1 in top5:
...   print int(id),'%.3f'%gain,int(n0),int(n1)
...
702 0.081 20 17 
329 0.073 23 25 
160 0.073 30 43 
315 0.073 30 43 
1034 0.069 5 53

The columns above are: bitId, infoGain, nInactive, nActive. Note that
this approach isn't particularly effective for this artificial
example.


Non-Chemical Functionality
**************************


Bit vectors
===========

Bit vectors are containers for efficiently storing a set number of binary values, e.g. for fingerprints.
The RDKit includes two types of fingerprints differing in how they store the values internally; the two types are easily interconverted but are best used for different purpose:

- SparseBitVects store only the list of bits set in the vector; they are well suited for storing very large, very sparsely occupied vectors like pharmacophore fingerprints.
  Some operations, such as retrieving the list of on bits, are quite fast.
  Others, such as negating the vector, are very, very slow.

- ExplicitBitVects keep track of both on and off bits.
  They are generally faster than SparseBitVects, but require more memory to store.


Discrete value vectors
======================


3D grids
========


Points
======


Getting Help
************

There is a reasonable amount of documentation available within from the RDKit's docstrings.
These are accessible using Python's help command:

>>> m = Chem.MolFromSmiles('Cc1ccccc1')
>>> m.GetNumAtoms()
7
>>> help(m.GetNumAtoms)
Help on method GetNumAtoms:
<BLANKLINE>
GetNumAtoms(...) method of rdkit.Chem.rdchem.Mol instance
    GetNumAtoms( (Mol)arg1 [, (bool)onlyHeavy=True]) -> int :
        Returns the number of Atoms in the molecule.
<BLANKLINE>
          ARGUMENTS:
            - onlyHeavy: (optional) include only heavy atoms (not Hs)
                         defaults to 1.
<BLANKLINE>
<BLANKLINE>
        C++ signature :
            unsigned int GetNumAtoms(RDKit::ROMol {lvalue} [,bool=True])
<BLANKLINE>
>>> m.GetNumAtoms(onlyHeavy=False)
15

When working in an environment that does command completion or tooltips, one can see the available methods quite easily.
Here's a sample screenshot from within Mark Hammond's PythonWin environment:

.. image:: images/picture_6.png


Advanced Topics/Warnings
************************


Editing Molecules
=================

Some of the functionality provided allows molecules to be edited “in place”:

>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetAtomWithIdx(0).SetAtomicNum(7)
>>> Chem.SanitizeMol(m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(m)
'c1ccncc1'

Do not forget the sanitization step, without it one can end up with results that look ok (so long as you don't think):

>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetAtomWithIdx(0).SetAtomicNum(8)
>>> Chem.MolToSmiles(m)
'c1ccocc1'

but that are, of course, complete nonsense, as sanitization will indicate:

>>> Chem.SanitizeMol(m)
Traceback (most recent call last):
  File "/usr/lib/python2.6/doctest.py", line 1253, in __run
    compileflags, 1) in test.globs
  File "<doctest default[0]>", line 1, in <module>
    Chem.SanitizeMol(m)
ValueError: Sanitization error: Can't kekulize mol 
<BLANKLINE>

More complex transformations can be carried out using the
:api:`rdkit.Chem.rdchem.EditableMol` class:

>>> m = Chem.MolFromSmiles('CC(=O)O') 
>>> em = Chem.EditableMol(m) 
>>> em.ReplaceAtom(3,Chem.Atom(7)) 
>>> em.AddAtom(Chem.Atom(6)) 
4
>>> em.AddAtom(Chem.Atom(6)) 
5
>>> em.AddBond(3,4,Chem.BondType.SINGLE) 
4
>>> em.AddBond(4,5,Chem.BondType.DOUBLE) 
5
>>> em.RemoveAtom(0) 

Note that the :api:`rdkit.Chem.rdchem.EditableMol` must be converted
back into a standard :api:`rdkit.Chem.rdchem.Mol` before much else can
be done with it:

>>> em.GetNumAtoms()
Traceback (most recent call last):
  File "/usr/lib/python2.6/doctest.py", line 1253, in __run
    compileflags, 1) in test.globs
  File "<doctest default[0]>", line 1, in <module>
    em.GetNumAtoms()
AttributeError: 'EditableMol' object has no attribute 'GetNumAtoms'
>>> Chem.MolToSmiles(em) 
Traceback (most recent call last):
  File "/usr/lib/python2.6/doctest.py", line 1253, in __run
    compileflags, 1) in test.globs
  File "<doctest default[1]>", line 1, in <module>
    Chem.MolToSmiles(em)
ArgumentError: Python argument types in
    rdkit.Chem.rdmolfiles.MolToSmiles(EditableMol)
did not match C++ signature:
    MolToSmiles(RDKit::ROMol {lvalue} mol, bool isomericSmiles=False, bool kekuleSmiles=False, int rootedAtAtom=-1, bool canonical=True)
>>> m2 = em.GetMol()
>>> Chem.SanitizeMol(m2)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(m2)
'C=CNC=O'

It is even easier to generate nonsense using the EditableMol than it
is with standard molecules.  If you need chemically reasonable
results, be certain to sanitize the results.


Miscellaneous Tips and Hints
****************************


Chem vs AllChem
===============

The majority of “basic” chemical functionality (e.g. reading/writing
molecules, substructure searching, molecular cleanup, etc.) is in the
:api:`rdkit.Chem` module.  More advanced, or less frequently used,
functionality is in :api:`rdkit.Chem.AllChem`.  The distinction has
been made to speed startup and lower import times; there's no sense in
loading the 2D->3D library and force field implementation if one is
only interested in reading and writing a couple of molecules.  If you
find the Chem/AllChem thing annoying or confusing, you can use
python's “import ... as ...” syntax to remove the irritation:

>>> from rdkit.Chem import AllChem as Chem
>>> m = Chem.MolFromSmiles('CCC')


The SSSR Problem
================

As others have ranted about with more energy and eloquence than I
intend to, the definition of a molecule's smallest set of smallest
rings is not unique.  In some high symmetry molecules, a “true” SSSR
will give results that are unappealing.  For example, the SSSR for
cubane only contains 5 rings, even though there are
“obviously” 6. This problem can be fixed by implementing a *small*
(instead of *smallest*) set of smallest rings algorithm that returns
symmetric results.  This is the approach that we took with the RDKit.

Because it is sometimes useful to be able to count how many SSSR rings
are present in the molecule, there is a
:api:`rdkit.Chem.rdmolops.GetSSSR` function, but this only returns the
SSSR count, not the potentially non-unique set of rings.


List of Available Descriptors
*****************************

+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Descriptor/Descriptor Family      | Notes                                                                                                                       |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Gasteiger/Marsili Partial Charges | *Tetrahedron* **36**:3219\-28 (1980)                                                                                        |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| BalabanJ                          | *Chem. Phys. Lett.* **89**:399\-404 (1982)                                                                                  |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| BertzCT                           | *J. Am. Chem. Soc.* **103**:3599\-601 (1981)                                                                                |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Ipc                               | *J. Chem. Phys.* **67**:4517\-33 (1977)                                                                                     |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| HallKierAlpha                     | *Rev. Comput. Chem.* **2**:367\-422 (1991)                                                                                  |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Kappa1 \- Kappa3                  | *Rev. Comput. Chem.* **2**:367\-422 (1991)                                                                                  |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Chi0, Chi1                        | *Rev. Comput. Chem.* **2**:367\-422 (1991)                                                                                  |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Chi0n \- Chi4n                    | *Rev. Comput. Chem.* **2**:367\-422 (1991)                                                                                  |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Chi0v \- Chi4v                    | *Rev. Comput. Chem.* **2**:367\-422 (1991)                                                                                  |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| MolLogP                           | Wildman and Crippen *JCICS* **39**:868\-73 (1999)                                                                           |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| MolMR                             | Wildman and Crippen *JCICS* **39**:868\-73 (1999)                                                                           |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| MolWt                             |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| HeavyAtomCount                    |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| HeavyAtomMolWt                    |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NHOHCount                         |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NOCount                           |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumHAcceptors                     |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumHDonors                        |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumHeteroatoms                    |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumRotatableBonds                 |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumValenceElectrons               |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| RingCount                         |                                                                                                                             |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| TPSA                              | *J. Med. Chem.* **43**:3714\-7, (2000)                                                                                      |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| LabuteASA                         | *J. Mol. Graph. Mod.* **18**:464\-77 (2000)                                                                                 |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| PEOE_VSA1 \- PEOE_VSA14           | MOE\-type descriptors using partial charges and surface area contributionshttp://www.chemcomp.com/journal/vsadesc.htm       |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| SMR_VSA1 \- SMR_VSA10             | MOE\-type descriptors using MR contributions and surface area contributionshttp://www.chemcomp.com/journal/vsadesc.htm      |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| SlogP_VSA1 \- SlogP_VSA12         | MOE\-type descriptors using LogP contributions and surface area contributionshttp://www.chemcomp.com/journal/vsadesc.htm    |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| EState_VSA1 \- EState_VSA11       | MOE\-type descriptors using EState indices and surface area contributions (developed at RD, not described in the CCG paper) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| VSA_EState1 \- VSA_EState10       | MOE\-type descriptors using EState indices and surface area contributions (developed at RD, not described in the CCG paper) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Topliss fragments                 | implemented using a set of SMARTS definitions in $(RDBASE)/Data/FragmentDescriptors.csv                                     |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+


List of Available Fingerprints
******************************

+----------------------+-----------------------------------------------------------------------------------------------------------+
| Fingerprint Type     | Notes                                                                                                     |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Topological          | a Daylight\-like fingerprint based on hashing molecular subgraphs                                         |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Atom Pairs           | *JCICS* **25**:64\-73 (1985)                                                                              |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Topological Torsions | *JCICS* **27**:82\-5 (1987)                                                                               |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| MACCS keys           | Using the 166 public keys implemented as SMARTS                                                           |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Morgan/Circular      | Fingerprints based on the Morgan algorithm, similar to the ECFP fingerprint*JCIM* **50**:742\-54 (2010).  |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| 2D Pharmacophore     | Uses topological distances between pharmacophoric points.                                                 |
+----------------------+-----------------------------------------------------------------------------------------------------------+


Feature Definitions Used in the Morgan Fingerprints
***************************************************

These are adapted from the definitions in Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.” *Biotechnology and Bioengineering* **61**, 47-54 (1998).

+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Feature  | SMARTS                                                                                                                                                                 |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Donor    | ``[$([N;!H0;v3,v4&+1]),$([O,S;H1;+0]),n&H1&+0]``                                                                                                                       |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Acceptor | ``[$([O,S;H1;v2;!$(*-*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N;v3;!$(N-*=[O,N,P,S])]),n&H0&+0,$([o,s;+0;!$([o,s]:n);!$([o,s]:c:n)])]``                             |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Aromatic | ``[a]``                                                                                                                                                                |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Halogen  | ``[F,Cl,Br,I]``                                                                                                                                                        |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Basic    | ``[#7;+,$([N;H2&+0][$([C,a]);!$([C,a](=O))]),$([N;H1&+0]([$([C,a]);!$([C,a](=O))])[$([C,a]);!$([C,a](=O))]),$([N;H0&+0]([C;!$(C(=O))])([C;!$(C(=O))])[C;!$(C(=O))])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Acidic   | ``[$([C,S](=[O,S,P])-[O;H1,-1])]``                                                                                                                                     |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

.. rubric:: Footnotes

.. [#blaney] Blaney, J. M.; Dixon, J. S. "Distance Geometry in Molecular Modeling".  *Reviews in Computational Chemistry*; VCH: New York, 1994.
.. [#rappe] Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations". *J. Am. Chem. Soc.* **114**:10024-35 (1992) .
.. [#carhart] Carhart, R.E.; Smith, D.H.; Venkataraghavan R. “Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications” *J. Chem. Inf. Comp. Sci.* **25**:64-73 (1985).
.. [#nilakantan] Nilakantan, R.; Bauman N.; Dixon J.S.; Venkataraghavan R. “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Desciptors.” *J. Chem.Inf. Comp. Sci.* **27**:82-5 (1987).
.. [#rogers] Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” *J. Chem. Inf. and Model.* **50**:742-54 (2010).
.. [#ashton] Ashton, M. et al. “Identification of Diverse Database Subsets using Property-Based and Fragment-Based Molecular Descriptions.” *Quantitative Structure-Activity Relationships* **21**:598-604 (2002).
.. [#lewell] Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. “RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry” *J. Chem. Inf. Comp. Sci.* **38**:511-22 (1998).
.. [#gobbi] Gobbi, A. & Poppinger, D. "Genetic optimization of combinatorial libraries." *Biotechnology and Bioengineering* **61**:47-54 (1998).
.. [#rxnsmarts] A more detailed description of reaction smarts, as defined by the rdkit, is in the :doc:`RDKit_Book`.


License
*******

.. image:: images/picture_5.png

This document is copyright (C) 2007-2011 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.


The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”

.. |picture_0| image:: images/picture_0.png
  :scale: 75 %

.. |picture_1| image:: images/picture_1.png
  :scale: 75 %

.. |picture_3| image:: images/picture_3.png 
  :scale: 75 %

.. |picture_2| image:: images/picture_2.png
  :scale: 50 %

.. |picture_4| image:: images/picture_4.png
  :scale: 75 %