1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
|
Getting Started with the RDKit in Python
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
What is this?
*************
This document is intended to provide an overview of how one can use
the RDKit functionality from Python. It's not comprehensive and it's
not a manual.
If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: rdkit-devel@lists.sourceforge.net
Reading and Writing Molecules
*****************************
Reading single molecules
========================
The majority of the basic molecular functionality is found in module :api:`rdkit.Chem`:
>>> from rdkit import Chem
Individual molecules can be constructed using a variety of approaches:
>>> m = Chem.MolFromSmiles('Cc1ccccc1')
>>> m = Chem.MolFromMolFile('data/input.mol')
>>> stringWithMolData=file('data/input.mol','r').read()
>>> m = Chem.MolFromMolBlock(stringWithMolData)
All of these functions return a :api:`rdkit.Chem.rdchem.Mol` object on success:
>>> m
<rdkit.Chem.rdchem.Mol object at 0x...>
or None on failure:
>>> m = Chem.MolFromMolFile('data/invalid.mol')
>>> m is None
True
An attempt is made to provide sensible error messages:
>>> m1 = Chem.MolFromSmiles('CO(C)C')
displays a message like: ``[12:18:01] Explicit valence for atom # 1 O greater than permitted`` and
>>> m2 = Chem.MolFromSmiles('c1cc1')
displays something like: ``[12:20:41] Can't kekulize mol``. In each case the value ``None`` is returned:
>>> m1 is None
True
>>> m2 is None
True
Reading sets of molecules
=========================
Groups of molecules are read using a Supplier (for example, an :api:`rdkit.Chem.rdmolfiles.SDMolSupplier` or a :api:`rdkit.Chem.rdmolfiles.SmilesMolSupplier`):
>>> suppl = Chem.SDMolSupplier('data/5ht3ligs.sdf')
>>> for mol in suppl:
... print mol.GetNumAtoms()
...
20
24
24
26
You can easily produce lists of molecules from a Supplier:
>>> mols = [x for x in suppl]
>>> len(mols)
4
or just treat the Supplier itself as a random-access object:
>>> suppl[0].GetNumAtoms()
20
A good practice is to test each molecule to see if it was correctly read before working with it:
>>> suppl = Chem.SDMolSupplier('data/5ht3ligs.sdf')
>>> for mol in suppl:
... if mol is None: continue
... print mol.GetNumAtoms()
...
20
24
24
26
An alternate type of Supplier, the :api:`rdkit.Chem.rdmolfiles.ForwardSDMolSupplier` can be used to read from file-like objects:
>>> inf = file('data/5ht3ligs.sdf')
>>> fsuppl = Chem.ForwardSDMolSupplier(inf)
>>> for mol in fsuppl:
... if mol is None: continue
... print mol.GetNumAtoms()
...
20
24
24
26
Note that ForwardSDMolSuppliers cannot be used as random-access objects:
>>> fsuppl[0]
Traceback (most recent call last):
...
TypeError: 'ForwardSDMolSupplier' object does not support indexing
Writing molecules
=================
Single molecules can be converted to text using several functions present in the :api:`rdkit.Chem` module.
For example, for SMILES:
>>> m = Chem.MolFromMolFile('data/chiral.mol')
>>> Chem.MolToSmiles(m)
'CC(O)c1ccccc1'
>>> Chem.MolToSmiles(m,isomericSmiles=True)
'C[C@H](O)c1ccccc1'
Note that the SMILES provided is canonical, so the output should be the same no matter how a particular molecule is input:
>>> Chem.MolToSmiles(Chem.MolFromSmiles('C1=CC=CN=C1'))
'c1ccncc1'
>>> Chem.MolToSmiles(Chem.MolFromSmiles('c1cccnc1'))
'c1ccncc1'
>>> Chem.MolToSmiles(Chem.MolFromSmiles('n1ccccc1'))
'c1ccncc1'
If you'd like to have the Kekule form of the SMILES, first Kekulize the molecule, then use the “kekuleSmiles” option:
>>> Chem.Kekulize(m)
>>> Chem.MolToSmiles(m,kekuleSmiles=True)
'CC(O)C1=CC=CC=C1'
Note: as of this writing (Aug 2008), the smiles provided when one requests kekuleSmiles are not canonical.
The limitation is not in the SMILES generation, but in the kekulization itself.
MDL Mol blocks are also available:
>>> m2 = Chem.MolFromSmiles('C1CCC1')
>>> print Chem.MolToMolBlock(m2) # doctest: +NORMALIZE_WHITESPACE
<BLANKLINE>
RDKit
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
To include names in the mol blocks, set the molecule's “_Name” property:
>>> m2.SetProp("_Name","cyclobutane")
>>> print Chem.MolToMolBlock(m2) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
It's usually preferable to have a depiction in the Mol block, this can
be generated using functionality in the :api:`rdkit.Chem.AllChem`
module (see the `Chem vs AllChem`_ section for more information).
You can either include 2D coordinates (i.e. a depiction):
>>> from rdkit.Chem import AllChem
>>> AllChem.Compute2DCoords(m2)
0
>>> print Chem.MolToMolBlock(m2) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit 2D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
1.0607 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
Or you can add 3D coordinates by embedding the molecule:
>>> AllChem.EmbedMolecule(m2)
0
>>> AllChem.UFFOptimizeMolecule(m2)
0
>>> print Chem.MolToMolBlock(m2) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit 3D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
-0.7931 0.5732 -0.2708 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.3802 -0.9196 -0.2340 C 0 0 0 0 0 0 0 0 0 0 0 0
0.7838 -0.5392 0.6548 C 0 0 0 0 0 0 0 0 0 0 0 0
0.3894 0.8856 0.6202 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
The optimization step isn't necessary, but it substantially improves the quality of the conformation.
If you'd like to write the molecules to a file, use Python file objects:
>>> print >>file('data/foo.mol','w+'),Chem.MolToMolBlock(m2)
>>>
Writing sets of molecules
=========================
Multiple molecules can be written to a file using an :api:`rdkit.Chem.rdmolfiles.SDWriter` object:
>>> w = Chem.SDWriter('data/foo.sdf')
>>> for m in mols: w.write(m)
...
>>>
An SDWriter can also be initialized using a file-like object:
>>> from StringIO import StringIO
>>> sio = StringIO()
>>> w = Chem.SDWriter(sio)
>>> for m in mols: w.write(m)
...
>>> w.flush()
>>> print sio.getvalue()
mol-295
RDKit 3D
<BLANKLINE>
20 22 0 0 0 0 0 0 0 0999 V2000
2.3200 0.0800 -0.1000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.8400 -1.2200 0.1200 C 0 0 0 0 0 0 0 0 0 0 0 0
...
1 3 1 0
1 4 1 0
2 5 1 0
M END
$$$$
<BLANKLINE>
Other available Writers include the :api:`rdkit.Chem.rdmolfiles.SmilesWriter` and the :api:`rdkit.Chem.rdmolfiles.TDTWriter`.
Working with Molecules
**********************
Looping over Atoms and Bonds
============================
Once you have a molecule, it's easy to loop over its atoms and bonds:
>>> m = Chem.MolFromSmiles('C1OC1')
>>> for atom in m.GetAtoms():
... print atom.GetAtomicNum()
...
6
8
6
>>> print m.GetBonds()[0].GetBondType()
SINGLE
You can also request individual bonds or atoms:
>>> m.GetAtomWithIdx(0).GetSymbol()
'C'
>>> m.GetAtomWithIdx(0).GetExplicitValence()
2
>>> m.GetBondWithIdx(0).GetBeginAtomIdx()
0
>>> m.GetBondWithIdx(0).GetEndAtomIdx()
1
>>> m.GetBondBetweenAtoms(0,1).GetBondType()
rdkit.Chem.rdchem.BondType.SINGLE
Atoms keep track of their neighbors:
>>> atom = m.GetAtomWithIdx(0)
>>> [x.GetAtomicNum() for x in atom.GetNeighbors()]
[8, 6]
>>> len(x.GetBonds())
2
Ring Information
================
Atoms and bonds both carry information about the molecule's rings:
>>> m = Chem.MolFromSmiles('OC1C2C1CC2')
>>> m.GetAtomWithIdx(0).IsInRing()
False
>>> m.GetAtomWithIdx(1).IsInRing()
True
>>> m.GetAtomWithIdx(2).IsInRingSize(3)
True
>>> m.GetAtomWithIdx(2).IsInRingSize(4)
True
>>> m.GetAtomWithIdx(2).IsInRingSize(5)
False
>>> m.GetBondWithIdx(1).IsInRingSize(3)
True
>>> m.GetBondWithIdx(1).IsInRing()
True
But note that the information is only about the smallest rings:
>>> m.GetAtomWithIdx(1).IsInRingSize(5)
False
More detail about the smallest set of smallest rings (SSSR) is available:
>>> ssr = Chem.GetSymmSSSR(m)
>>> len(ssr)
2
>>> list(ssr[0])
[1, 2, 3]
>>> list(ssr[1])
[4, 5, 2, 3]
As the name indicates, this is a symmetrized SSSR; if you are interested in the number of “true” SSSR, use the GetSSSR function.
>>> Chem.GetSSSR(m)
2
The distinction between symmetrized and non-symmetrized SSSR is discussed in more detail below in the section `The SSSR Problem`_.
For more efficient queries about a molecule's ring systems (avoiding repeated calls to Mol.GetAtomWithIdx), use the :api:`rdkit.Chem.rdchem.RingInfo` class:
>>> m = Chem.MolFromSmiles('OC1C2C1CC2')
>>> ri = m.GetRingInfo()
>>> ri.NumAtomRings(0)
0
>>> ri.NumAtomRings(1)
1
>>> ri.NumAtomRings(2)
2
>>> ri.IsAtomInRingOfSize(1,3)
True
>>> ri.IsBondInRingOfSize(1,3)
True
Modifying molecules
===================
Normally molecules are stored in the RDKit with the hydrogen atoms implicit (e.g. not explicitly present in the molecular graph.
When it is useful to have the hydrogens explicitly present, for example when generating or optimizing the 3D geometry, the :api:`rdkit.Chem.rdmolops.AddHs` function can be used:
>>> m=Chem.MolFromSmiles('CCO')
>>> m.GetNumAtoms()
3
>>> m2 = Chem.AddHs(m)
>>> m2.GetNumAtoms()
9
The Hs can be removed again using the :api:`rdkit.Chem.rdmolops.RemoveHs` function:
>>> m3 = Chem.RemoveHs(m2)
>>> m3.GetNumAtoms()
3
RDKit molecules are usually stored with the bonds in aromatic rings having aromatic bond types.
This can be changed with the :api:`rdkit.Chem.rdmolops.Kekulize` function:
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.AROMATIC
>>> Chem.Kekulize(m)
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.DOUBLE
>>> m.GetBondWithIdx(1).GetBondType()
rdkit.Chem.rdchem.BondType.SINGLE
The bonds are still marked as being aromatic:
>>> m.GetBondWithIdx(1).GetIsAromatic()
True
and can be restored to the aromatic bond type using the :api:`rdkit.Chem.rdmolops.SanitizeMol` function:
>>> Chem.SanitizeMol(m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.AROMATIC
Working with 2D molecules: Generating Depictions
================================================
The RDKit has a library for generating depictions (sets of 2D) coordinates for molecules.
This library, which is part of the AllChem module, is accessed using the :api:`rdkit.Chem.rdDepictor.Compute2DCoords` function:
>>> m = Chem.MolFromSmiles('c1nccc2n1ccc2')
>>> AllChem.Compute2DCoords(m)
0
The 2D conformation is constructed in a canonical orientation and is
built to minimize intramolecular clashes, i.e. to maximize the clarity
of the drawing.
If you have a set of molecules that share a common template and you'd
like to align them to that template, you can do so as follows:
>>> template = Chem.MolFromSmiles('c1nccc2n1ccc2')
>>> AllChem.Compute2DCoords(template)
0
>>> AllChem.GenerateDepictionMatching2DStructure(m,template)
Running this process for a couple of other molecules gives the
following depictions:
+---------------+---------------+---------------+
| |picture_1| | |picture_0| | |picture_3| |
+---------------+---------------+---------------+
Another option for Compute2DCoords allows you to generate 2D depictions for molecules that closely mimic 3D conformations.
This is available using the function :api:`rdkit.Chem.AllChem.GenerateDepictionMatching3DStructure`.
Here is an illustration of the results using the ligand from PDB structure 1XP0:
+---------------+---------------+
| |picture_2| | |picture_4| |
+---------------+---------------+
More fine-grained control can be obtained using the core function
:api:`rdkit.Chem.rdDepictor.Compute2DCoordsMimicDistmat`, but that is
beyond the scope of this document. See the implementation of
GenerateDepictionMatching3DStructure in AllChem.py for an example of
how it is used.
Working with 3D Molecules
=========================
The RDKit can generate conformations for molecules using distance geometry. [#blaney]_
The algorithm followed is:
1. The molecule's distance bounds matrix is calculated based on the connection table and a set of rules.
2. The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.
3. A random distance matrix that satisfies the bounds matrix is generated.
4. This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).
5. The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.
Multiple conformations can be generated by repeating steps 4 and 5 several times, using a different random distance matrix each time.
Note that the conformations that result from this procedure tend to be fairly ugly.
They should be cleaned up using a force field.
This can be done within the RDKit using its implementation of the Universal Force Field (UFF). [#rappe]_
The full process of embedding and optimizing a molecule is easier than all the above verbiage makes it sound:
>>> m = Chem.MolFromSmiles('C1CCC1OC')
>>> m2=Chem.AddHs(m)
>>> AllChem.EmbedMolecule(m2)
0
>>> AllChem.UFFOptimizeMolecule(m2)
0
*Disclaimer/Warning*: Conformation generation is a difficult and subtle task.
The 2D->3D conversion provided within the RDKit is not intended to be a replacement for a “real” conformational analysis tool; it merely provides quick 3D structures for cases when they are required.
Preserving Molecules
====================
Molecules can be converted to and from text using Python's pickling machinery:
>>> m = Chem.MolFromSmiles('c1ccncc1')
>>> import cPickle
>>> pkl = cPickle.dumps(m)
>>> type(pkl)
<type 'str'>
>>> m2=cPickle.loads(pkl)
>>> Chem.MolToSmiles(m2)
'c1ccncc1'
The RDKit pickle format is fairly compact and it is much, much faster to build a molecule from a pickle than from a Mol file or SMILES string, so storing molecules you will be working with repeatedly as pickles can be a good idea.
The raw binary data that is encapsulated in a pickle can also be directly obtained from a molecule:
>>> binStr = m.ToBinary()
This can be used to reconstruct molecules using the Chem.Mol constructor:
>>> m2 = Chem.Mol(binStr)
>>> Chem.MolToSmiles(m2)
'c1ccncc1'
>>> len(binStr)
123
>>> len(pkl)
475
Note that this huge difference in text length is because we didn't tell python to use its most efficient representation of the pickle:
>>> pkl = cPickle.dumps(m,2)
>>> len(pkl)
157
The small overhead associated with python's pickling machinery normally doesn't end up making much of a difference for collections of larger molecules (the extra data associated with the pickle is independent of the size of the molecule, while the binary string increases in length as the molecule gets larger).
*Tip*: The performance difference associated with storing molecules in a pickled form on disk instead of constantly reparsing an SD file or SMILES table is difficult to overstate.
In a test I just ran on my laptop, loading a set of 699 drug-like molecules from an SD file took 10.8 seconds; loading the same molecules from a pickle file took 0.7 seconds.
The pickle file is also smaller – 1/3 the size of the SD file – but this difference is not always so dramatic (it's a particularly fat SD file).
Substructure Searching
**********************
Substructure matching can be done using query molecules built from SMARTS:
>>> m = Chem.MolFromSmiles('c1ccccc1O')
>>> patt = Chem.MolFromSmarts('ccO')
>>> m.HasSubstructMatch(patt)
True
>>> m.GetSubstructMatch(patt)
(0, 5, 6)
Those are the atom indices in ``m``, ordered as ``patt``'s atoms. To get all of the matches:
>>> m.GetSubstructMatches(patt)
((0, 5, 6), (4, 5, 6))
This can be used to easily filter lists of molecules:
>>> suppl = Chem.SDMolSupplier('data/actives_5ht3.sdf')
>>> patt = Chem.MolFromSmarts('c[NH1]')
>>> matches = []
>>> for mol in suppl:
... if mol.HasSubstructMatch(patt):
... matches.append(mol)
...
>>> len(matches)
22
We can write the same thing more compactly using Python's list comprehension syntax:
>>> matches = [x for x in suppl if x.HasSubstructMatch(patt)]
>>> len(matches)
22
Substructure matching can also be done using molecules built from SMILES instead of SMARTS:
>>> m = Chem.MolFromSmiles('C1=CC=CC=C1OC')
>>> m.HasSubstructMatch(Chem.MolFromSmarts('CO'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmiles('CO'))
True
But don't forget that the semantics of the two languages are not exactly equivalent:
>>> m.HasSubstructMatch(Chem.MolFromSmiles('COC'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmarts('COC'))
False
>>> m.HasSubstructMatch(Chem.MolFromSmarts('COc')) #<- need an aromatic C
True
There's also functionality for using the substructure machinery for doing quick molecular transformations.
These transformations include deleting substructures:
>>> m = Chem.MolFromSmiles('CC(=O)O')
>>> patt = Chem.MolFromSmarts('C(=O)[OH]')
>>> rm = AllChem.DeleteSubstructs(m,patt)
>>> Chem.MolToSmiles(rm)
'C'
replacing substructures:
>>> repl = Chem.MolFromSmiles('OC')
>>> patt = Chem.MolFromSmarts('[$(NC(=O))]')
>>> m = Chem.MolFromSmiles('CC(=O)N')
>>> rms = AllChem.ReplaceSubstructs(m,patt,repl)
>>> rms
(<rdkit.Chem.rdchem.Mol object at 0x...>,)
>>> Chem.MolToSmiles(rms[0])
'COC(=O)C'
as well as simple SAR-table transformations like removing side chains:
>>> m1 = Chem.MolFromSmiles('BrCCc1cncnc1C(=O)O')
>>> core = Chem.MolFromSmiles('c1cncnc1')
>>> tmp = Chem.ReplaceSidechains(m1,core)
>>> Chem.MolToSmiles(tmp)
'[*]c1cncnc1[*]'
and removing cores:
>>> tmp = Chem.ReplaceCore(m1,core)
>>> Chem.MolToSmiles(tmp)
'[*]CCBr.[*]C(=O)O'
To get more detail about the sidechains (e.g. sidechain labels), use isomeric smiles:
>>> Chem.MolToSmiles(tmp,True)
'[1*]CCBr.[2*]C(=O)O'
By default the sidechains are labeled based on the order they are found.
They can also be labeled according by the number of that core-atom they're attached to:
>>> m1 = Chem.MolFromSmiles('c1c(CCO)ncnc1C(=O)O')
>>> tmp=Chem.ReplaceCore(m1,core,labelByIndex=True)
>>> Chem.MolToSmiles(tmp,True)
'[1*]CCO.[5*]C(=O)O'
:api:`rdkit.Chem.rdmolops.ReplaceCore` returns the sidechains in a single molecule.
This can be split into separate molecules using :api:`rdkit.Chem.rdmolops.GetMolFrags` :
>>> rs = Chem.GetMolFrags(tmp,asMols=True)
>>> len(rs)
2
>>> Chem.MolToSmiles(rs[0],True)
'[1*]CCO'
>>> Chem.MolToSmiles(rs[1],True)
'[5*]C(=O)O'
Note that these transformation functions are intended to provide an easy way to make simple modifications to molecules.
For more complex transformations, use the `Chemical Reactions`_ functionality.
Fingerprinting and Molecular Similarity
***************************************
The RDKit has a variety of built-in functionality for generating molecular fingerprints and using them to calculate molecular similarity.
Topological Fingerprints
========================
>>> from rdkit import DataStructs
>>> from rdkit.Chem.Fingerprints import FingerprintMols
>>> ms = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO'),
... Chem.MolFromSmiles('COC')]
>>> fps = [FingerprintMols.FingerprintMol(x) for x in ms]
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1])
0.666...
>>> DataStructs.FingerprintSimilarity(fps[0],fps[2])
0.444...
>>> DataStructs.FingerprintSimilarity(fps[1],fps[2])
0.25
The fingerprinting algorithm used is similar to that used in the
Daylight fingerprinter: it identifies and hashes topological paths
(e.g. along bonds) in the molecule and then uses them to set bits in a
fingerprint of user-specified lengths. After all paths have been identified, the fingerprint is typically folded down until a particular density of set bits is obtained.
The default set of parameters used by the fingerprinter is:
- minimum path size: 1 bond
- maximum path size: 7 bonds
- fingerprint size: 2048 bits
- number of bits set per hash: 2
- minimum fingerprint size: 64 bits
- target on-bit density 0.3
You can control these by calling
:api:`rdkit.Chem.rdmolops.RDKFingerprint` directly; this will return
an unfolded fingerprint that you can then fold to the desired density.
The function
:api:`rdkit.Chem.Fingerprints.FingerprintMols.FingerprintMol` (written
in python) shows how this is done.
The default similarity metric used by
:api:`rdkit.DataStructs.FingerprintSimilarity` is the Tanimoto
similarity. One can use different similarity metrics:
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1], metric=DataStructs.DiceSimilarity)
0.800...
Available similarity metrics include Tanimoto, Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky.
MACCS Keys
==========
There is a SMARTS-based implementation of the 166 public MACCS keys.
>>> from rdkit.Chem import MACCSkeys
>>> fps = [MACCSkeys.GenMACCSKeys(x) for x in ms]
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1])
0.5
>>> DataStructs.FingerprintSimilarity(fps[0],fps[2])
0.538...
>>> DataStructs.FingerprintSimilarity(fps[1],fps[2])
0.214...
The MACCS keys were critically evaluated and compared to other MACCS implementations in Q3 2008. In cases where the public keys are fully defined, things looked pretty good.
Atom Pairs and Topological Torsions
===================================
Atom-pair descriptors [#carhart]_ are available in several different forms.
The standard form is as fingerprint including counts for each bit instead of just zeros and ones:
>>> from rdkit.Chem.AtomPairs import Pairs
>>> ms = [Chem.MolFromSmiles('C1CCC1OCC'),Chem.MolFromSmiles('CC(C)OCC'),Chem.MolFromSmiles('CCOCC')]
>>> pairFps = [Pairs.GetAtomPairFingerprint(x) for x in ms]
Because the space of bits that can be included in atom-pair fingerprints is huge, they are stored in a sparse manner.
We can get the list of bits and their counts for each fingerprint as a dictionary:
>>> d = pairFps[-1].GetNonzeroElements()
>>> d[541732]
1
>>> d[1606690]
2
Descriptions of the bits are also available:
>>> Pairs.ExplainPairScore(558115)
(('C', 1, 0), 3, ('C', 2, 0))
The above means: C with 1 neighbor and 0 pi electrons which is 3 bonds
from a C with 2 neighbors and 0 pi electrons
The usual metric for similarity between atom-pair fingerprints is Dice similarity:
>>> from rdkit import DataStructs
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[1])
0.333...
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[2])
0.258...
>>> DataStructs.DiceSimilarity(pairFps[1],pairFps[2])
0.560...
It's also possible to get atom-pair descriptors encoded as a standard
bit vector fingerprint (ignoring the count information):
>>> pairFps = [Pairs.GetAtomPairFingerprintAsBitVect(x) for x in ms]
Since these are standard bit vectors, the :api:`rdkit.DataStructs`
module can be used for similarity:
>>> from rdkit import DataStructs
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[1])
0.479...
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[2])
0.380...
>>> DataStructs.DiceSimilarity(pairFps[1],pairFps[2])
0.625
Topological torsion descriptors [#nilakantan]_ are calculated in
essentially the same way:
>>> from rdkit.Chem.AtomPairs import Torsions
>>> tts = [Torsions.GetTopologicalTorsionFingerprintAsIntVect(x) for x in ms]
>>> DataStructs.DiceSimilarity(tts[0],tts[1])
0.166...
At the time of this writing, topological torsion fingerprints have too many bits to be encodeable using the BitVector machinery, so there is no GetTopologicalTorsionFingerprintAsBitVect function.
Morgan Fingerprints (Circular Fingerprints)
===========================================
This family of fingerprints, better known as circular fingerprints
[#rogers]_, is built by applying the Morgan algorithm to a set of
user-supplied atom invariants. When generating Morgan fingerprints,
the radius of the fingerprint must also be provided :
>>> from rdkit.Chem import AllChem
>>> m1 = Chem.MolFromSmiles('Cc1ccccc1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2)
>>> fp1
<rdkit.DataStructs.cDataStructs.UIntSparseIntVect object at 0x...>
>>> m2 = Chem.MolFromSmiles('Cc1ncccc1')
>>> fp2 = AllChem.GetMorganFingerprint(m2,2)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.55...
Morgan fingerprints, like atom pairs and topological torsions, use
counts by default, but it's also possible to calculate them as bit
vectors:
>>> fp1 = AllChem.GetMorganFingerprintAsBitVect(m1,2,nBits=1024)
>>> fp1
<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...>
>>> fp2 = AllChem.GetMorganFingerprintAsBitVect(m2,2,nBits=1024)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.51...
The default atom invariants use connectivity information similar to
those used for the well known ECFP family of fingerprints.
Feature-based invariants, similar to those used for the FCFP
fingerprints, can also be used. The feature definitions used are
defined in the section `Feature Definitions Used in the Morgan
Fingerprints`_. At times this can lead to quite different similarity
scores:
>>> m1 = Chem.MolFromSmiles('c1ccccn1')
>>> m2 = Chem.MolFromSmiles('c1ccco1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2)
>>> fp2 = AllChem.GetMorganFingerprint(m2,2)
>>> ffp1 = AllChem.GetMorganFingerprint(m1,2,useFeatures=True)
>>> ffp2 = AllChem.GetMorganFingerprint(m2,2,useFeatures=True)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.36...
>>> DataStructs.DiceSimilarity(ffp1,ffp2)
0.90...
When comparing the ECFP/FCFP fingerprints and the Morgan fingerprints
generated by the RDKit, remember that the 4 in ECFP4 corresponds to
the diameter of the atom environments considered, while the Morgan
fingerprints take a radius parameter. So the examples above, with
radius=2, are roughly equivalent to ECFP4 and FCFP4.
The user can also provide their own atom invariants using the optional
invariants argument to
:api:`rdkit.Chem.rdMolDescriptors.GetMorganFingerprint`. Here's a
simple example that uses a constant for the invariant; the resulting
fingerprints compare the topology of molecules:
>>> m1 = Chem.MolFromSmiles('Cc1ccccc1')
>>> m2 = Chem.MolFromSmiles('Cc1ncncn1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2,invariants=[1]*m1.GetNumAtoms())
>>> fp2 = AllChem.GetMorganFingerprint(m2,2,invariants=[1]*m2.GetNumAtoms())
>>> fp1==fp2
True
Note that bond order is by default still considered:
>>> m3 = Chem.MolFromSmiles('CC1CCCCC1')
>>> fp3 = AllChem.GetMorganFingerprint(m3,2,invariants=[1]*m3.GetNumAtoms())
>>> fp1==fp3
False
But this can also be turned off:
>>> fp1 = AllChem.GetMorganFingerprint(m1,2,invariants=[1]*m1.GetNumAtoms(),
... useBondTypes=False)
>>> fp3 = AllChem.GetMorganFingerprint(m3,2,invariants=[1]*m3.GetNumAtoms(),
... useBondTypes=False)
>>> fp1==fp3
True
Explaining bits from Morgan Fingerprints
----------------------------------------
Information is available about the atoms that contribute to particular
bits in the Morgan fingerprint via the bitInfo argument. The
dictionary provided is populated with one entry per bit set in the
fingerprint, the keys are the bit ids, the values are lists of (atom
index, radius) tuples.
>>> m = Chem.MolFromSmiles('c1cccnc1C')
>>> info={}
>>> fp = AllChem.GetMorganFingerprint(m,2,bitInfo=info)
>>> len(fp.GetNonzeroElements())
16
>>> len(info)
16
>>> info[98513984]
((1, 1), (2, 1))
>>> info[4048591891]
((5, 2),)
Interpreting the above: bit 98513984 is set twice: once by atom 1 and
once by atom 2, each at radius 1. Bit 4048591891 is set once by atom 5
at radius 2.
Focusing on bit 4048591891, we can extract the submolecule consisting
of all atoms within a radius of 2 of atom 5:
>>> env = Chem.FindAtomEnvironmentOfRadiusN(m,2,5)
>>> amap={}
>>> submol=Chem.PathToSubmol(m,env,atomMap=amap)
>>> submol.GetNumAtoms()
6
>>> amap
{0: 3, 1: 5, 3: 4, 4: 0, 5: 1, 6: 2}
And then “explain” the bit by generating SMILES for that submolecule:
>>> Chem.MolToSmiles(submol)
'ccc(C)nc'
This is more useful when the SMILES is rooted at the central atom:
>>> Chem.MolToSmiles(submol,rootedAtAtom=amap[5],canonical=False)
'c(nc)(C)cc'
Picking Diverse Molecules Using Fingerprints
============================================
A common task is to pick a small subset of diverse molecules from a
larger set. The RDKit provides a number of approaches for doing this
in the :api:`rdkit.SimDivFilters` module. The most efficient of these uses the
MaxMin algorithm. [#ashton]_ Here's an example:
Start by reading in a set of molecules and generating Morgan fingerprints:
>>> from rdkit import Chem
>>> from rdkit.Chem.rdMolDescriptors import GetMorganFingerprint
>>> from rdkit import DataStructs
>>> from rdkit.SimDivFilters.rdSimDivPickers import MaxMinPicker
>>> ms = [x for x in Chem.SDMolSupplier('data/actives_5ht3.sdf')]
>>> while ms.count(None): ms.remove(None)
>>> fps = [GetMorganFingerprint(x,3) for x in ms]
>>> nfps = len(fps)
The algorithm requires a function to calculate distances between
objects, we'll do that using DiceSimilarity:
>>> def distij(i,j,fps=fps):
... return 1-DataStructs.DiceSimilarity(fps[i],fps[j])
Now create a picker and grab a set of 10 diverse molecules:
>>> picker = MaxMinPicker()
>>> pickIndices = picker.LazyPick(distij,nfps,10,seed=23)
>>> list(pickIndices)
[93, 109, 154, 6, 95, 135, 151, 61, 137, 139]
Note that the picker just returns indices of the fingerprints; we can
get the molecules themselves as follows:
>>> picks = [ms[x] for x in pickIndices]
Descriptor Calculation
**********************
A variety of descriptors are available within the RDKit.
The complete list is provided in `List of Available Descriptors`_.
Most of the descriptors are straightforward to use from Python via the
centralized :api:`rdkit.Chem.Descriptors` module :
>>> from rdkit.Chem import Descriptors
>>> m = Chem.MolFromSmiles('c1ccccc1C(=O)O')
>>> Descriptors.TPSA(m)
37.299...
>>> Descriptors.MolLogP(m)
1.3848
Partial charges are handled a bit differently:
>>> m = Chem.MolFromSmiles('c1ccccc1C(=O)O')
>>> AllChem.ComputeGasteigerCharges(m)
>>> float(m.GetAtomWithIdx(0).GetProp('_GasteigerCharge'))
-0.047...
Chemical Reactions
******************
The RDKit also supports applying chemical reactions to sets of
molecules. One way of constructing chemical reactions is to use a
SMARTS-based language similar to Daylight's Reaction SMILES
[#rxnsmarts]_:
>>> rxn = AllChem.ReactionFromSmarts('[C:1](=[O:2])-[OD1].[N!H0:3]>>[C:1](=[O:2])[N:3]')
>>> rxn
<rdkit.Chem.rdChemReactions.ChemicalReaction object at 0x...>
>>> rxn.GetNumProductTemplates()
1
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('CC(=O)O'),Chem.MolFromSmiles('NC')))
>>> len(ps) # one entry for each possible set of products
1
>>> len(ps[0]) # each entry contains one molecule for each product
1
>>> Chem.MolToSmiles(ps[0][0])
'CNC(=O)C'
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('C(COC(=O)O)C(=O)O'),Chem.MolFromSmiles('NC')))
>>> len(ps)
2
>>> Chem.MolToSmiles(ps[0][0])
'CNC(OCCC(O)=O)=O'
>>> Chem.MolToSmiles(ps[1][0])
'CNC(CCOC(O)=O)=O'
Reactions can also be built from MDL rxn files:
>>> rxn = AllChem.ReactionFromRxnFile('data/AmideBond.rxn')
>>> rxn.GetNumReactantTemplates()
2
>>> rxn.GetNumProductTemplates()
1
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('CC(=O)O'), Chem.MolFromSmiles('NC')))
>>> len(ps)
1
>>> Chem.MolToSmiles(ps[0][0])
'CNC(=O)C'
It is, of course, possible to do reactions more complex than amide
bond formation:
>>> rxn = AllChem.ReactionFromSmarts('[C:1]=[C:2].[C:3]=[*:4][*:5]=[C:6]>>[C:1]1[C:2][C:3][*:4]=[*:5][C:6]1')
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('OC=C'), Chem.MolFromSmiles('C=CC(N)=C')))
>>> Chem.MolToSmiles(ps[0][0])
'NC1=CCCC(O)C1'
Note in this case that there are multiple mappings of the reactants
onto the templates, so we have multiple product sets:
>>> len(ps)
4
You can use canonical smiles and a python dictionary to get the unique products:
>>> uniqps = {}
>>> for p in ps:
... smi = Chem.MolToSmiles(p[0])
... uniqps[smi] = p[0]
...
>>> uniqps.keys()
['NC1=CCC(O)CC1', 'NC1=CCCC(O)C1']
Note that the molecules that are produced by the chemical reaction
processing code are not sanitized, as this artificial reaction
demonstrates:
>>> rxn = AllChem.ReactionFromSmarts('[C:1]=[C:2][C:3]=[C:4].[C:5]=[C:6]>>[C:1]1=[C:2][C:3]=[C:4][C:5]=[C:6]1')
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('C=CC=C'), Chem.MolFromSmiles('C=C')))
>>> Chem.MolToSmiles(ps[0][0])
'C1=CC=CC=C1'
>>> p0 = ps[0][0]
>>> Chem.SanitizeMol(p0)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(p0)
'c1ccccc1'
Recap Implementation
====================
Associated with the chemical reaction functionality is an
implementation of the Recap algorithm. [#lewell]_ Recap uses a set of
chemical transformations mimicking common reactions carried out in the
lab in order to decompose a molecule into a series of reasonable
fragments.
The RDKit :api:`rdkit.Chem.Recap` implementation keeps track of the hierarchy of
transformations that were applied:
>>> from rdkit import Chem
>>> from rdkit.Chem import Recap
>>> m = Chem.MolFromSmiles('c1ccccc1OCCOC(=O)CC')
>>> hierarch = Recap.RecapDecompose(m)
>>> type(hierarch)
<class 'rdkit.Chem.Recap.RecapHierarchyNode'>
The hierarchy is rooted at the original molecule:
>>> hierarch.smiles
'CCC(=O)OCCOc1ccccc1'
and each node tracks its children using a dictionary keyed by SMILES:
>>> ks=hierarch.children.keys()
>>> ks.sort()
>>> ks
['[*]C(=O)CC', '[*]CCOC(=O)CC', '[*]CCOc1ccccc1', '[*]OCCOc1ccccc1', '[*]c1ccccc1']
The nodes at the bottom of the hierarchy (the leaf nodes) are easily
accessible, also as a dictionary keyed by SMILES:
>>> ks=hierarch.GetLeaves().keys()
>>> ks.sort()
>>> ks
['[*]C(=O)CC', '[*]CCO[*]', '[*]CCOc1ccccc1', '[*]c1ccccc1']
Notice that dummy atoms are used to mark points where the molecule was fragmented.
The nodes themselves have associated molecules:
>>> leaf = hierarch.GetLeaves()[ks[0]]
>>> Chem.MolToSmiles(leaf.mol)
'[*]C(=O)CC'
Chemical Features and Pharmacophores
************************************
Chemical Features
=================
Chemical features in the RDKit are defined using a SMARTS-based feature definition language (described in detail in the RDKit book).
To identify chemical features in molecules, you first must build a feature factory:
>>> from rdkit import Chem
>>> from rdkit.Chem import ChemicalFeatures
>>> from rdkit import RDConfig
>>> import os
>>> fdefName = os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef')
>>> factory = ChemicalFeatures.BuildFeatureFactory(fdefName)
and then use the factory to search for features:
>>> m = Chem.MolFromSmiles('OCc1ccccc1CN')
>>> feats = factory.GetFeaturesForMol(m)
>>> len(feats)
8
The individual features carry information about their family (e.g. donor, acceptor, etc.), type (a more detailed description), and the atom(s) that is/are associated with the feature:
>>> feats[0].GetFamily()
'Donor'
>>> feats[0].GetType()
'SingleAtomDonor'
>>> feats[0].GetAtomIds()
(0,)
>>> feats[4].GetFamily()
'Aromatic'
>>> feats[4].GetAtomIds()
(2, 3, 4, 5, 6, 7)
If the molecule has coordinates, then the features will also have reasonable locations:
>>> from rdkit.Chem import AllChem
>>> AllChem.Compute2DCoords(m)
0
>>> feats[0].GetPos()
<rdkit.Geometry.rdGeometry.Point3D object at 0x...>
>>> list(feats[0].GetPos())
[-2.99..., -1.558..., 0.0]
2D Pharmacophore Fingerprints
=============================
Combining a set of chemical features with the 2D (topological)
distances between them gives a 2D pharmacophore. When the distances
are binned, unique integer ids can be assigned to each of these
pharmacophores and they can be stored in a fingerprint. Details of
the encoding are in the :doc:`RDKit_Book`.
Generating pharmacophore fingerprints requires chemical features
generated via the usual RDKit feature-typing mechanism:
>>> from rdkit import Chem
>>> from rdkit.Chem import ChemicalFeatures
>>> fdefName = 'data/MinimalFeatures.fdef'
>>> featFactory = ChemicalFeatures.BuildFeatureFactory(fdefName)
The fingerprints themselves are calculated using a signature
(fingerprint) factory, which keeps track of all the parameters
required to generate the pharmacophore:
>>> from rdkit.Chem.Pharm2D.SigFactory import SigFactory
>>> sigFactory = SigFactory(featFactory,minPointCount=2,maxPointCount=3)
>>> sigFactory.SetBins([(0,2),(2,5),(5,8)])
>>> sigFactory.Init()
>>> sigFactory.GetSigSize()
885
The signature factory is now ready to be used to generate
fingerprints, a task which is done using the
:api:`rdkit.Chem.Pharm2D.Generate` module:
>>> from rdkit.Chem.Pharm2D import Generate
>>> mol = Chem.MolFromSmiles('OCC(=O)CCCN')
>>> fp = Generate.Gen2DFingerprint(mol,sigFactory)
>>> fp
<rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...>
>>> len(fp)
885
>>> fp.GetNumOnBits()
57
Details about the bits themselves, including the features that are
involved and the binned distance matrix between the features, can be
obtained from the signature factory:
>>> list(fp.GetOnBits())[:5]
[1, 2, 6, 7, 8]
>>> sigFactory.GetBitDescription(1)
'Acceptor Acceptor |0 1|1 0|'
>>> sigFactory.GetBitDescription(2)
'Acceptor Acceptor |0 2|2 0|'
>>> sigFactory.GetBitDescription(8)
'Acceptor Donor |0 2|2 0|'
>>> list(fp.GetOnBits())[-5:]
[704, 706, 707, 708, 714]
>>> sigFactory.GetBitDescription(707)
'Donor Donor PosIonizable |0 1 2|1 0 1|2 1 0|'
>>> sigFactory.GetBitDescription(714)
'Donor Donor PosIonizable |0 2 2|2 0 0|2 0 0|'
For the sake of convenience (to save you from having to edit the fdef
file every time) it is possible to disable particular feature types
within the SigFactory:
>>> sigFactory.skipFeats=['PosIonizable']
>>> sigFactory.Init()
>>> sigFactory.GetSigSize()
510
>>> fp2 = Generate.Gen2DFingerprint(mol,sigFactory)
>>> fp2.GetNumOnBits()
36
Another possible set of feature definitions for 2D pharmacophore
fingerprints in the RDKit are those published by Gobbi and
Poppinger. [#gobbi]_ The module
:api:`rdkit.Chem.Pharm2D.Gobbi_Pharm2D` has a pre-configured signature
factory for these fingerprint types. Here's an example of using it:
>>> from rdkit import Chem
>>> from rdkit.Chem.Pharm2D import Gobbi_Pharm2D,Generate
>>> m = Chem.MolFromSmiles('OCC=CC(=O)O')
>>> fp = Generate.Gen2DFingerprint(m,Gobbi_Pharm2D.factory)
>>> fp
<rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...>
>>> fp.GetNumOnBits()
8
>>> list(fp.GetOnBits())
[23, 30, 150, 154, 157, 185, 28878, 30184]
>>> Gobbi_Pharm2D.factory.GetBitDescription(157)
'HA HD |0 3|3 0|'
>>> Gobbi_Pharm2D.factory.GetBitDescription(30184)
'HA HD HD |0 3 0|3 0 3|0 3 0|'
Molecular Fragments
*******************
The RDKit contains a collection of tools for fragmenting molecules and
working with those fragments. Fragments are defined to be made up of
a set of connected atoms that may have associated functional groups.
This is more easily demonstrated than explained:
>>> fName=os.path.join(RDConfig.RDDataDir,'FunctionalGroups.txt')
>>> from rdkit.Chem import FragmentCatalog
>>> fparams = FragmentCatalog.FragCatParams(1,6,fName)
>>> fparams.GetNumFuncGroups()
39
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> fcgen=FragmentCatalog.FragCatGenerator()
>>> m = Chem.MolFromSmiles('OCC=CC(=O)O')
>>> fcgen.AddFragsFromMol(m,fcat)
3
>>> fcat.GetEntryDescription(0)
'CC<-O>'
>>> fcat.GetEntryDescription(1)
'C<-C(=O)O>=C'
>>> fcat.GetEntryDescription(2)
'C<-C(=O)O>=CC<-O>'
The fragments are stored as entries in a
:api:`rdkit.Chem.rdfragcatalog.FragCatalog`. Notice that the
entry descriptions include pieces in angular brackets (e.g. between
'<' and '>'). These describe the functional groups attached to the
fragment. For example, in the above example, the catalog entry 0
corresponds to an ethyl fragment with an alcohol attached to one of
the carbons and entry 1 is an ethylene with a carboxylic acid on one
carbon. Detailed information about the functional groups can be
obtained by asking the fragment for the ids of the functional groups
it contains and then looking those ids up in the
:api:`rdkit.Chem.rdfragcatalog.FragCatParams`
object:
>>> list(fcat.GetEntryFuncGroupIds(2))
[34, 1]
>>> fparams.GetFuncGroup(1)
<rdkit.Chem.rdchem.Mol object at 0x...>
>>> Chem.MolToSmarts(fparams.GetFuncGroup(1))
'*-C(=O)-,:[O&D1]'
>>> Chem.MolToSmarts(fparams.GetFuncGroup(34))
'*-[O&D1]'
>>> fparams.GetFuncGroup(1).GetProp('_Name')
'-C(=O)O'
>>> fparams.GetFuncGroup(34).GetProp('_Name')
'-O'
The catalog is hierarchical: smaller fragments are combined to form
larger ones. From a small fragment, one can find the larger fragments
to which it contributes using the
:api:`rdkit.Chem.rdfragcatalog.FragCatalog.GetEntryDownIds`
method:
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> m = Chem.MolFromSmiles('OCC(NC1CC1)CCC')
>>> fcgen.AddFragsFromMol(m,fcat)
15
>>> fcat.GetEntryDescription(0)
'CC<-O>'
>>> fcat.GetEntryDescription(1)
'CN<-cPropyl>'
>>> list(fcat.GetEntryDownIds(0))
[3, 4]
>>> fcat.GetEntryDescription(3)
'CCC<-O>'
>>> fcat.GetEntryDescription(4)
'C<-O>CN<-cPropyl>'
The fragments from multiple molecules can be added to a catalog:
>>> suppl = Chem.SmilesMolSupplier('data/bzr.smi')
>>> ms = [x for x in suppl]
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> for m in ms: nAdded=fcgen.AddFragsFromMol(m,fcat)
>>> fcat.GetNumEntries()
1169
>>> fcat.GetEntryDescription(0)
'cC'
>>> fcat.GetEntryDescription(100)
'cc-nc(C)n'
The fragments in a catalog are unique, so adding a molecule a second
time doesn't add any new entries:
>>> fcgen.AddFragsFromMol(ms[0],fcat)
0
>>> fcat.GetNumEntries()
1169
Once a :api:`rdkit.Chem.rdfragcatalog.FragCatalog` has been
generated, it can be used to fingerprint molecules:
>>> fpgen = FragmentCatalog.FragFPGenerator()
>>> fp = fpgen.GetFPForMol(ms[8],fcat)
>>> fp
<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...>
>>> fp.GetNumOnBits()
189
The rest of the machinery associated with fingerprints can now be
applied to these fragment fingerprints. For example, it's easy to
find the fragments that two molecules have in common by taking the
intersection of their fingerprints:
>>> fp2 = fpgen.GetFPForMol(ms[7],fcat)
>>> andfp = fp&fp2
>>> obl = list(andfp.GetOnBits())
>>> fcat.GetEntryDescription(obl[-1])
'ccc(NC<=O>)cc'
>>> fcat.GetEntryDescription(obl[-5])
'c<-X>ccc(N)cc'
or we can find the fragments that distinguish one molecule from
another:
>>> combinedFp=fp&(fp^fp2) # can be more efficent than fp&(!fp2)
>>> obl = list(combinedFp.GetOnBits())
>>> fcat.GetEntryDescription(obl[-1])
'cccc(N)cc'
Or we can use the bit ranking functionality from the
:api:`rdkit.ML.InfoTheory.rdInfoTheory.InfoBitRanker` class to identify fragments
that distinguish actives from inactives:
>>> suppl = Chem.SDMolSupplier('data/bzr.sdf')
>>> sdms = [x for x in suppl]
>>> fps = [fpgen.GetFPForMol(x,fcat) for x in sdms]
>>> from rdkit.ML.InfoTheory import InfoBitRanker
>>> ranker = InfoBitRanker(len(fps[0]),2)
>>> acts = [float(x.GetProp('ACTIVITY')) for x in sdms]
>>> for i,fp in enumerate(fps):
... act = int(acts[i]>7)
... ranker.AccumulateVotes(fp,act)
...
>>> top5 = ranker.GetTopN(5)
>>> for id,gain,n0,n1 in top5:
... print int(id),'%.3f'%gain,int(n0),int(n1)
...
702 0.081 20 17
329 0.073 23 25
160 0.073 30 43
315 0.073 30 43
1034 0.069 5 53
The columns above are: bitId, infoGain, nInactive, nActive. Note that
this approach isn't particularly effective for this artificial
example.
Non-Chemical Functionality
**************************
Bit vectors
===========
Bit vectors are containers for efficiently storing a set number of binary values, e.g. for fingerprints.
The RDKit includes two types of fingerprints differing in how they store the values internally; the two types are easily interconverted but are best used for different purpose:
- SparseBitVects store only the list of bits set in the vector; they are well suited for storing very large, very sparsely occupied vectors like pharmacophore fingerprints.
Some operations, such as retrieving the list of on bits, are quite fast.
Others, such as negating the vector, are very, very slow.
- ExplicitBitVects keep track of both on and off bits.
They are generally faster than SparseBitVects, but require more memory to store.
Discrete value vectors
======================
3D grids
========
Points
======
Getting Help
************
There is a reasonable amount of documentation available within from the RDKit's docstrings.
These are accessible using Python's help command:
>>> m = Chem.MolFromSmiles('Cc1ccccc1')
>>> m.GetNumAtoms()
7
>>> help(m.GetNumAtoms)
Help on method GetNumAtoms:
<BLANKLINE>
GetNumAtoms(...) method of rdkit.Chem.rdchem.Mol instance
GetNumAtoms( (Mol)arg1 [, (bool)onlyHeavy=True]) -> int :
Returns the number of Atoms in the molecule.
<BLANKLINE>
ARGUMENTS:
- onlyHeavy: (optional) include only heavy atoms (not Hs)
defaults to 1.
<BLANKLINE>
<BLANKLINE>
C++ signature :
unsigned int GetNumAtoms(RDKit::ROMol {lvalue} [,bool=True])
<BLANKLINE>
>>> m.GetNumAtoms(onlyHeavy=False)
15
When working in an environment that does command completion or tooltips, one can see the available methods quite easily.
Here's a sample screenshot from within Mark Hammond's PythonWin environment:
.. image:: images/picture_6.png
Advanced Topics/Warnings
************************
Editing Molecules
=================
Some of the functionality provided allows molecules to be edited “in place”:
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetAtomWithIdx(0).SetAtomicNum(7)
>>> Chem.SanitizeMol(m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(m)
'c1ccncc1'
Do not forget the sanitization step, without it one can end up with results that look ok (so long as you don't think):
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetAtomWithIdx(0).SetAtomicNum(8)
>>> Chem.MolToSmiles(m)
'c1ccocc1'
but that are, of course, complete nonsense, as sanitization will indicate:
>>> Chem.SanitizeMol(m)
Traceback (most recent call last):
File "/usr/lib/python2.6/doctest.py", line 1253, in __run
compileflags, 1) in test.globs
File "<doctest default[0]>", line 1, in <module>
Chem.SanitizeMol(m)
ValueError: Sanitization error: Can't kekulize mol
<BLANKLINE>
More complex transformations can be carried out using the
:api:`rdkit.Chem.rdchem.EditableMol` class:
>>> m = Chem.MolFromSmiles('CC(=O)O')
>>> em = Chem.EditableMol(m)
>>> em.ReplaceAtom(3,Chem.Atom(7))
>>> em.AddAtom(Chem.Atom(6))
4
>>> em.AddAtom(Chem.Atom(6))
5
>>> em.AddBond(3,4,Chem.BondType.SINGLE)
4
>>> em.AddBond(4,5,Chem.BondType.DOUBLE)
5
>>> em.RemoveAtom(0)
Note that the :api:`rdkit.Chem.rdchem.EditableMol` must be converted
back into a standard :api:`rdkit.Chem.rdchem.Mol` before much else can
be done with it:
>>> em.GetNumAtoms()
Traceback (most recent call last):
File "/usr/lib/python2.6/doctest.py", line 1253, in __run
compileflags, 1) in test.globs
File "<doctest default[0]>", line 1, in <module>
em.GetNumAtoms()
AttributeError: 'EditableMol' object has no attribute 'GetNumAtoms'
>>> Chem.MolToSmiles(em)
Traceback (most recent call last):
File "/usr/lib/python2.6/doctest.py", line 1253, in __run
compileflags, 1) in test.globs
File "<doctest default[1]>", line 1, in <module>
Chem.MolToSmiles(em)
ArgumentError: Python argument types in
rdkit.Chem.rdmolfiles.MolToSmiles(EditableMol)
did not match C++ signature:
MolToSmiles(RDKit::ROMol {lvalue} mol, bool isomericSmiles=False, bool kekuleSmiles=False, int rootedAtAtom=-1, bool canonical=True)
>>> m2 = em.GetMol()
>>> Chem.SanitizeMol(m2)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(m2)
'C=CNC=O'
It is even easier to generate nonsense using the EditableMol than it
is with standard molecules. If you need chemically reasonable
results, be certain to sanitize the results.
Miscellaneous Tips and Hints
****************************
Chem vs AllChem
===============
The majority of “basic” chemical functionality (e.g. reading/writing
molecules, substructure searching, molecular cleanup, etc.) is in the
:api:`rdkit.Chem` module. More advanced, or less frequently used,
functionality is in :api:`rdkit.Chem.AllChem`. The distinction has
been made to speed startup and lower import times; there's no sense in
loading the 2D->3D library and force field implementation if one is
only interested in reading and writing a couple of molecules. If you
find the Chem/AllChem thing annoying or confusing, you can use
python's “import ... as ...” syntax to remove the irritation:
>>> from rdkit.Chem import AllChem as Chem
>>> m = Chem.MolFromSmiles('CCC')
The SSSR Problem
================
As others have ranted about with more energy and eloquence than I
intend to, the definition of a molecule's smallest set of smallest
rings is not unique. In some high symmetry molecules, a “true” SSSR
will give results that are unappealing. For example, the SSSR for
cubane only contains 5 rings, even though there are
“obviously” 6. This problem can be fixed by implementing a *small*
(instead of *smallest*) set of smallest rings algorithm that returns
symmetric results. This is the approach that we took with the RDKit.
Because it is sometimes useful to be able to count how many SSSR rings
are present in the molecule, there is a
:api:`rdkit.Chem.rdmolops.GetSSSR` function, but this only returns the
SSSR count, not the potentially non-unique set of rings.
List of Available Descriptors
*****************************
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Descriptor/Descriptor Family | Notes |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Gasteiger/Marsili Partial Charges | *Tetrahedron* **36**:3219\-28 (1980) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| BalabanJ | *Chem. Phys. Lett.* **89**:399\-404 (1982) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| BertzCT | *J. Am. Chem. Soc.* **103**:3599\-601 (1981) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Ipc | *J. Chem. Phys.* **67**:4517\-33 (1977) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| HallKierAlpha | *Rev. Comput. Chem.* **2**:367\-422 (1991) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Kappa1 \- Kappa3 | *Rev. Comput. Chem.* **2**:367\-422 (1991) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Chi0, Chi1 | *Rev. Comput. Chem.* **2**:367\-422 (1991) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Chi0n \- Chi4n | *Rev. Comput. Chem.* **2**:367\-422 (1991) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Chi0v \- Chi4v | *Rev. Comput. Chem.* **2**:367\-422 (1991) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| MolLogP | Wildman and Crippen *JCICS* **39**:868\-73 (1999) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| MolMR | Wildman and Crippen *JCICS* **39**:868\-73 (1999) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| MolWt | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| HeavyAtomCount | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| HeavyAtomMolWt | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NHOHCount | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NOCount | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumHAcceptors | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumHDonors | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumHeteroatoms | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumRotatableBonds | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| NumValenceElectrons | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| RingCount | |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| TPSA | *J. Med. Chem.* **43**:3714\-7, (2000) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| LabuteASA | *J. Mol. Graph. Mod.* **18**:464\-77 (2000) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| PEOE_VSA1 \- PEOE_VSA14 | MOE\-type descriptors using partial charges and surface area contributionshttp://www.chemcomp.com/journal/vsadesc.htm |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| SMR_VSA1 \- SMR_VSA10 | MOE\-type descriptors using MR contributions and surface area contributionshttp://www.chemcomp.com/journal/vsadesc.htm |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| SlogP_VSA1 \- SlogP_VSA12 | MOE\-type descriptors using LogP contributions and surface area contributionshttp://www.chemcomp.com/journal/vsadesc.htm |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| EState_VSA1 \- EState_VSA11 | MOE\-type descriptors using EState indices and surface area contributions (developed at RD, not described in the CCG paper) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| VSA_EState1 \- VSA_EState10 | MOE\-type descriptors using EState indices and surface area contributions (developed at RD, not described in the CCG paper) |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
| Topliss fragments | implemented using a set of SMARTS definitions in $(RDBASE)/Data/FragmentDescriptors.csv |
+-----------------------------------+-----------------------------------------------------------------------------------------------------------------------------+
List of Available Fingerprints
******************************
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Fingerprint Type | Notes |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Topological | a Daylight\-like fingerprint based on hashing molecular subgraphs |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Atom Pairs | *JCICS* **25**:64\-73 (1985) |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Topological Torsions | *JCICS* **27**:82\-5 (1987) |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| MACCS keys | Using the 166 public keys implemented as SMARTS |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| Morgan/Circular | Fingerprints based on the Morgan algorithm, similar to the ECFP fingerprint*JCIM* **50**:742\-54 (2010). |
+----------------------+-----------------------------------------------------------------------------------------------------------+
| 2D Pharmacophore | Uses topological distances between pharmacophoric points. |
+----------------------+-----------------------------------------------------------------------------------------------------------+
Feature Definitions Used in the Morgan Fingerprints
***************************************************
These are adapted from the definitions in Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.” *Biotechnology and Bioengineering* **61**, 47-54 (1998).
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Feature | SMARTS |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Donor | ``[$([N;!H0;v3,v4&+1]),$([O,S;H1;+0]),n&H1&+0]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Acceptor | ``[$([O,S;H1;v2;!$(*-*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N;v3;!$(N-*=[O,N,P,S])]),n&H0&+0,$([o,s;+0;!$([o,s]:n);!$([o,s]:c:n)])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Aromatic | ``[a]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Halogen | ``[F,Cl,Br,I]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Basic | ``[#7;+,$([N;H2&+0][$([C,a]);!$([C,a](=O))]),$([N;H1&+0]([$([C,a]);!$([C,a](=O))])[$([C,a]);!$([C,a](=O))]),$([N;H0&+0]([C;!$(C(=O))])([C;!$(C(=O))])[C;!$(C(=O))])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Acidic | ``[$([C,S](=[O,S,P])-[O;H1,-1])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
.. rubric:: Footnotes
.. [#blaney] Blaney, J. M.; Dixon, J. S. "Distance Geometry in Molecular Modeling". *Reviews in Computational Chemistry*; VCH: New York, 1994.
.. [#rappe] Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations". *J. Am. Chem. Soc.* **114**:10024-35 (1992) .
.. [#carhart] Carhart, R.E.; Smith, D.H.; Venkataraghavan R. “Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications” *J. Chem. Inf. Comp. Sci.* **25**:64-73 (1985).
.. [#nilakantan] Nilakantan, R.; Bauman N.; Dixon J.S.; Venkataraghavan R. “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Desciptors.” *J. Chem.Inf. Comp. Sci.* **27**:82-5 (1987).
.. [#rogers] Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” *J. Chem. Inf. and Model.* **50**:742-54 (2010).
.. [#ashton] Ashton, M. et al. “Identification of Diverse Database Subsets using Property-Based and Fragment-Based Molecular Descriptions.” *Quantitative Structure-Activity Relationships* **21**:598-604 (2002).
.. [#lewell] Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. “RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry” *J. Chem. Inf. Comp. Sci.* **38**:511-22 (1998).
.. [#gobbi] Gobbi, A. & Poppinger, D. "Genetic optimization of combinatorial libraries." *Biotechnology and Bioengineering* **61**:47-54 (1998).
.. [#rxnsmarts] A more detailed description of reaction smarts, as defined by the rdkit, is in the :doc:`RDKit_Book`.
License
*******
.. image:: images/picture_5.png
This document is copyright (C) 2007-2011 by Greg Landrum
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”
.. |picture_0| image:: images/picture_0.png
:scale: 75 %
.. |picture_1| image:: images/picture_1.png
:scale: 75 %
.. |picture_3| image:: images/picture_3.png
:scale: 75 %
.. |picture_2| image:: images/picture_2.png
:scale: 50 %
.. |picture_4| image:: images/picture_4.png
:scale: 75 %
|