File: Cookbook.rst

package info (click to toggle)
rdkit 201403-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 62,288 kB
  • ctags: 15,156
  • sloc: cpp: 125,376; python: 55,674; java: 4,831; ansic: 4,178; xml: 2,499; sql: 1,775; yacc: 1,551; lex: 1,051; makefile: 353; fortran: 183; sh: 148; cs: 93
file content (537 lines) | stat: -rw-r--r-- 16,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
RDKit Cookbook
%%%%%%%%%%%%%%



What is this?
*************

This document provides examples of how to carry out particular tasks 
using the RDKit functionality from Python. The contents have been
contributed by the RDKit community.

If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: rdkit-discuss@lists.sourceforge.net 
(you will need to subscribe first)


Miscellaneous Topics
********************

Using a different aromaticity model
-----------------------------------

By default, the RDKit applies its own model of aromaticity (explained
in the RDKit Theory Book) when it reads in molecules. It is, however,
fairly easy to override this and use your own aromaticity model.

The easiest way to do this is it provide the molecules as SMILES with
the aromaticity set as you would prefer to have it. For example,
consider indole: 

.. image:: images/indole1.png
 
By default the RDKit considers both rings to be aromatic:

>>> from rdkit import Chem
>>> m = Chem.MolFromSmiles('N1C=Cc2ccccc12')
>>> m.GetSubstructMatches(Chem.MolFromSmarts('c'))
((1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,))

If you'd prefer to treat the five-membered ring as aliphatic, which is
how the input SMILES is written, you just need to do a partial
sanitization that skips the kekulization and aromaticity perception
steps: 

>>> m2 = Chem.MolFromSmiles('N1C=Cc2ccccc12',sanitize=False)
>>> Chem.SanitizeMol(m2,sanitizeOps=Chem.SanitizeFlags.SANITIZE_ALL^Chem.SanitizeFlags.SANITIZE_KEKULIZE^Chem.SanitizeFlags.SANITIZE_SETAROMATICITY)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> m2.GetSubstructMatches(Chem.MolFromSmarts('c'))
((3,), (4,), (5,), (6,), (7,), (8,))

It is, of course, also possible to write your own aromaticity
perception function, but that is beyond the scope of this document.


Manipulating Molecules
**********************

Cleaning up heterocycles
------------------------

Mailing list discussions:

*  http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01185.html
*  http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01162.html
*  http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01900.html   
*  http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01901.html   

The code:

.. testcode::

  """ sanifix4.py
   
    Contribution from James Davidson
  """
  from rdkit import Chem
  from rdkit.Chem import AllChem

  def _FragIndicesToMol(oMol,indices):
      em = Chem.EditableMol(Chem.Mol())

      newIndices={}
      for i,idx in enumerate(indices):
          em.AddAtom(oMol.GetAtomWithIdx(idx))
          newIndices[idx]=i

      for i,idx in enumerate(indices):
          at = oMol.GetAtomWithIdx(idx)
          for bond in at.GetBonds():
              if bond.GetBeginAtomIdx()==idx:
                  oidx = bond.GetEndAtomIdx()
              else:
                  oidx = bond.GetBeginAtomIdx()
              # make sure every bond only gets added once:
              if oidx<idx:
                  continue
              em.AddBond(newIndices[idx],newIndices[oidx],bond.GetBondType())
      res = em.GetMol()
      res.ClearComputedProps()
      Chem.GetSymmSSSR(res)
      res.UpdatePropertyCache(False)
      res._idxMap=newIndices
      return res

  def _recursivelyModifyNs(mol,matches,indices=None):
      if indices is None:
          indices=[]
      res=None
      while len(matches) and res is None:
          tIndices=indices[:]
          nextIdx = matches.pop(0)
          tIndices.append(nextIdx)
          nm = Chem.Mol(mol)
          nm.GetAtomWithIdx(nextIdx).SetNoImplicit(True)
          nm.GetAtomWithIdx(nextIdx).SetNumExplicitHs(1)
          cp = Chem.Mol(nm)
          try:
              Chem.SanitizeMol(cp)
          except ValueError:
              res,indices = _recursivelyModifyNs(nm,matches,indices=tIndices)
          else:
              indices=tIndices
              res=cp
      return res,indices

  def AdjustAromaticNs(m,nitrogenPattern='[n&D2&H0;r5,r6]'):
      """
         default nitrogen pattern matches Ns in 5 rings and 6 rings in order to be able
         to fix: O=c1ccncc1
      """
      Chem.GetSymmSSSR(m)
      m.UpdatePropertyCache(False)

      # break non-ring bonds linking rings:
      em = Chem.EditableMol(m)
      linkers = m.GetSubstructMatches(Chem.MolFromSmarts('[r]!@[r]'))
      plsFix=set()
      for a,b in linkers:
          em.RemoveBond(a,b)
          plsFix.add(a)
          plsFix.add(b)
      nm = em.GetMol()
      for at in plsFix:
          at=nm.GetAtomWithIdx(at)
          if at.GetIsAromatic() and at.GetAtomicNum()==7:
              at.SetNumExplicitHs(1)
              at.SetNoImplicit(True)

      # build molecules from the fragments:
      fragLists = Chem.GetMolFrags(nm)
      frags = [_FragIndicesToMol(nm,x) for x in fragLists]

      # loop through the fragments in turn and try to aromatize them:
      ok=True
      for i,frag in enumerate(frags):
          cp = Chem.Mol(frag)
          try:
              Chem.SanitizeMol(cp)
          except ValueError:
              matches = [x[0] for x in frag.GetSubstructMatches(Chem.MolFromSmarts(nitrogenPattern))]
              lres,indices=_recursivelyModifyNs(frag,matches)
              if not lres:
                  #print 'frag %d failed (%s)'%(i,str(fragLists[i]))
                  ok=False
                  break
              else:
                  revMap={}
                  for k,v in frag._idxMap.iteritems():
                      revMap[v]=k
                  for idx in indices:
                      oatom = m.GetAtomWithIdx(revMap[idx])
                      oatom.SetNoImplicit(True)
                      oatom.SetNumExplicitHs(1)
      if not ok:
          return None
      return m


Examples of using it:

.. testcode:: 

  smis= ('O=c1ccc2ccccc2n1',
         'Cc1nnnn1C',
         'CCc1ccc2nc(=O)c(cc2c1)Cc1nnnn1C1CCCCC1',
         'c1cnc2cc3ccnc3cc12',
         'c1cc2cc3ccnc3cc2n1',
         'O=c1ccnc(c1)-c1cnc2cc3ccnc3cc12',
         'O=c1ccnc(c1)-c1cc1',
         )
  for smi in smis:
        m = Chem.MolFromSmiles(smi,False)  
        try:
            m.UpdatePropertyCache(False)
            cp = Chem.Mol(m)
            Chem.SanitizeMol(cp)
            m = cp
            print 'fine:',Chem.MolToSmiles(m)
        except ValueError:
            nm=AdjustAromaticNs(m)
            if nm is not None:
                Chem.SanitizeMol(nm)
                print 'fixed:',Chem.MolToSmiles(nm)
            else:
                print 'still broken:',smi

This produces:

.. testoutput::

    fixed: O=c1ccc2ccccc2[nH]1
    fine: Cc1nnnn1C
    fixed: CCc1ccc2[nH]c(=O)c(Cc3nnnn3C3CCCCC3)cc2c1
    fine: C1=Cc2cc3c(cc2=N1)C=CN=3
    fine: C1=Cc2cc3c(cc2=N1)N=CC=3
    fixed: O=c1cc[nH]c(C2=CN=c3cc4c(cc32)=NC=C4)c1
    still broken: O=c1ccnc(c1)-c1cc1

Parallel conformation generation
--------------------------------

Mailing list discussion:
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg02648.html

The code::

  """ contribution from Andrew Dalke """
  import sys
  from rdkit import Chem
  from rdkit.Chem import AllChem

  # Download this from http://pypi.python.org/pypi/futures
  from concurrent import futures

  # Download this from http://pypi.python.org/pypi/progressbar
  import progressbar

  ## On my machine, it takes 39 seconds with 1 worker and 10 seconds with 4.
  ## 29.055u 0.102s 0:28.68 101.6%   0+0k 0+3io 0pf+0w
  #max_workers=1

  ## With 4 threads it takes 11 seconds.
  ## 34.933u 0.188s 0:10.89 322.4%   0+0k 125+1io 0pf+0w
  max_workers=4

  # (The "u"ser time includes time spend in the children processes.
  #  The wall-clock time is 28.68 and 10.89 seconds, respectively.)

  # This function is called in the subprocess.
  # The parameters (molecule and number of conformers) are passed via a Python 
  def generateconformations(m, n):
      m = Chem.AddHs(m)
      ids=AllChem.EmbedMultipleConfs(m, numConfs=n)
      for id in ids:
          AllChem.UFFOptimizeMolecule(m, confId=id)
      # EmbedMultipleConfs returns a Boost-wrapped type which
      # cannot be pickled. Convert it to a Python list, which can.
      return m, list(ids)

  smi_input_file, sdf_output_file = sys.argv[1:3]

  n = int(sys.argv[3])

  writer = Chem.SDWriter(sdf_output_file)

  suppl = Chem.SmilesMolSupplier(smi_input_file, titleLine=False)

  with futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
      # Submit a set of asynchronous jobs
      jobs = []
      for mol in suppl:
          if mol:
              job = executor.submit(generateconformations, mol, n)
              jobs.append(job)

      widgets = ["Generating conformations; ", progressbar.Percentage(), " ", 
                 progressbar.ETA(), " ", progressbar.Bar()]
      pbar = progressbar.ProgressBar(widgets=widgets, maxval=len(jobs))
      for job in pbar(futures.as_completed(jobs)):
          mol,ids=job.result()
          for id in ids:
              writer.write(mol, confId=id)
  writer.close()

Neutralizing Charged Molecules
------------------------------

Mailing list discussion:
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg02648.html

Wiki page: 
http://code.google.com/p/rdkit/wiki/NeutralisingCompounds

The code:

.. testcode::

  """ contribution from Hans de Winter """
  from rdkit import Chem
  from rdkit.Chem import AllChem

  def _InitialiseNeutralisationReactions():
      patts= (
          # Imidazoles
          ('[n+;H]','n'),
          # Amines
          ('[N+;!H0]','N'),
          # Carboxylic acids and alcohols
          ('[$([O-]);!$([O-][#7])]','O'),
          # Thiols
          ('[S-;X1]','S'),
          # Sulfonamides
          ('[$([N-;X2]S(=O)=O)]','N'),
          # Enamines
          ('[$([N-;X2][C,N]=C)]','N'),
          # Tetrazoles
          ('[n-]','[nH]'),
          # Sulfoxides
          ('[$([S-]=O)]','S'),
          # Amides
          ('[$([N-]C=O)]','N'),
          )
      return [(Chem.MolFromSmarts(x),Chem.MolFromSmiles(y,False)) for x,y in patts]

  _reactions=None
  def NeutraliseCharges(smiles, reactions=None):
      global _reactions
      if reactions is None:
          if _reactions is None:
              _reactions=_InitialiseNeutralisationReactions()
          reactions=_reactions
      mol = Chem.MolFromSmiles(smiles)
      replaced = False
      for i,(reactant, product) in enumerate(reactions):
          while mol.HasSubstructMatch(reactant):
              replaced = True
              rms = AllChem.ReplaceSubstructs(mol, reactant, product)
              mol = rms[0]
      if replaced:
          return (Chem.MolToSmiles(mol,True), True)
      else:
          return (smiles, False)

Examples of using it:

.. testcode:: 

  smis=("c1cccc[nH+]1",
        "C[N+](C)(C)C","c1ccccc1[NH3+]",
        "CC(=O)[O-]","c1ccccc1[O-]",
        "CCS",
        "C[N-]S(=O)(=O)C",
        "C[N-]C=C","C[N-]N=C",
        "c1ccc[n-]1",
        "CC[N-]C(=O)CC")
  for smi in smis:
      (molSmiles, neutralised) = NeutraliseCharges(smi)
      print smi,"->",molSmiles

This produces:

.. testoutput::

    c1cccc[nH+]1 -> c1ccncc1
    C[N+](C)(C)C -> C[N+](C)(C)C
    c1ccccc1[NH3+] -> Nc1ccccc1
    CC(=O)[O-] -> CC(=O)O
    c1ccccc1[O-] -> Oc1ccccc1
    CCS -> CCS
    C[N-]S(=O)(=O)C -> CNS(C)(=O)=O
    C[N-]C=C -> C=CNC
    C[N-]N=C -> C=NNC
    c1ccc[n-]1 -> c1cc[nH]c1
    CC[N-]C(=O)CC -> CCNC(=O)CC


Using scikit-learn with RDKit
-----------------------------

scikit-learn is a machine-learning library for Python 
containing a variety of supervised and unsupervised methods.
The documention can be found here:
http://scikit-learn.org/stable/user_guide.html

RDKit fingerprints can be used to train machine-learning
models from scikit-learn. Here is an example for random forest:

The code::

  from rdkit import Chem, DataStructs
  from rdkit.Chem import AllChem
  from sklearn.ensemble import RandomForestClassifier
  import numpy
  
  # generate four molecules
  m1 = Chem.MolFromSmiles('c1ccccc1')
  m2 = Chem.MolFromSmiles('c1ccccc1CC')
  m3 = Chem.MolFromSmiles('c1ccncc1')
  m4 = Chem.MolFromSmiles('c1ccncc1CC')
  mols = [m1, m2, m3, m4]
  
  # generate fingeprints: Morgan fingerprint with radius 2
  fps = [AllChem.GetMorganFingerprintAsBitVect(m, 2) for m in mols]
  
  # convert the RDKit explicit vectors into numpy arrays
  np_fps = []
  for fp in fps:
    arr = numpy.zeros((1,))
    DataStructs.ConvertToNumpyArray(fp, arr)
    np_fps.append(arr)
    
  # get a random forest classifiert with 100 trees
  rf = RandomForestClassifier(n_estimators=100, random_state=1123)
  
  # train the random forest
  # with the first two molecules being actives (class 1) and 
  # the last two being inactives (class 0)
  ys_fit = [1, 1, 0, 0]
  rf.fit(np_fps, ys_fit)
  
  # use the random forest to predict a new molecule
  m5 = Chem.MolFromSmiles('c1ccccc1O')
  fp = numpy.zeros((1,))
  DataStructs.ConvertToNumpyArray(AllChem.GetMorganFingerprintAsBitVect(m5, 2), fp)
  
  print rf.predict(fp)
  print rf.predict_proba(fp)

The output with scikit-learn version 0.13 is:

    [1]
    
    [[ 0.14  0.86]]
    

Generating a similarity map for this model.

The code::

  from rdkit.Chem.Draw import SimilarityMaps
  
  # helper function
  def getProba(fp, predictionFunction):
    return predictionFunction(fp)[0][1]
  
  m5 = Chem.MolFromSmiles('c1ccccc1O')
  fig, maxweight = SimilarityMaps.GetSimilarityMapForModel(m5, SimilarityMaps.GetMorganFingerprint, lambda x: getProba(x, rf.predict_proba))
  
This produces:
    
.. image:: images/similarity_map_rf.png


Using custom MCS atom types
---------------------------

Mailing list discussion:
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg03676.html

IPython notebook:
http://nbviewer.ipython.org/gist/greglandrum/8351725
https://gist.github.com/greglandrum/8351725

The goal is to be able to use custom atom types in the MCS code, yet
still be able to get a readable SMILES for the MCS. We will use the
MCS code's option to use isotope information in the matching and then
set bogus isotope values that contain our isotope information.

The code:

.. testcode::

  # our test molecules:
  smis=["COc1ccc(C(Nc2nc3c(ncn3COCC=O)c(=O)[nH]2)(c2ccccc2)c2ccccc2)cc1",
        "COc1ccc(C(Nc2nc3c(ncn3COC(CO)(CO)CO)c(=O)[nH]2)(c2ccccc2)c2ccccc2)cc1"]
  ms = [Chem.MolFromSmiles(x) for x in smis]

  from rdkit import Chem
  from rdkit.Chem import MCS
  
  def label(a):
    " a simple hash combining atom number and hybridization "
    return 100*int(a.GetHybridization())+a.GetAtomicNum()

  # copy the molecules, since we will be changing them
  nms = [Chem.Mol(x) for x in ms]
  for nm in nms:
    for at in nm.GetAtoms():
        at.SetIsotope(label(at))

  mcs=MCS.FindMCS(nms,atomCompare='isotopes')
  print mcs.smarts

This generates the following output:

.. testoutput::

  [406*]-[308*]-[306*]:1:[306*]:[306*]:[306*](:[306*]:[306*]:1)-[406*](-[306*]:1:[306*]:[306*]:[306*]:[306*]:[306*]:1)(-[306*]:1:[306*]:[306*]:[306*]:[306*]:[306*]:1)-[307*]-[306*]:1:[307*]:[306*]:2:[306*](:[306*](:[307*]:1)=[308*]):[307*]:[306*]:[307*]:2-[406*]-[408*]-[406*]

That's what we asked for, but it's not exactly readable. We can get to a more readable form in a two step process:

  1) Do a substructure match of the MCS onto a copied molecule
  2) Generate SMILES for the original molecule, using only the atoms that matched in the copy.

This works because we know that the atom indices in the copies and the original molecules are the same.
  
.. testcode::

  def getMCSSmiles(mol,labelledMol,mcs):
      mcsp = Chem.MolFromSmarts(mcs.smarts)
      match = labelledMol.GetSubstructMatch(mcsp)
      return Chem.MolFragmentToSmiles(ms[0],atomsToUse=match,
                                      isomericSmiles=True,
                                      canonical=False)

  print getMCSSmiles(ms[0],nms[0],mcs)

.. testoutput::

  COc1ccc(C(Nc2nc3c(ncn3COC)c(=O)[nH]2)(c2ccccc2)c2ccccc2)cc1

That's what we were looking for.


License
*******

This document is copyright (C) 2012-2014 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.


The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”