1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
// $Id$
//
// Copyright (C) 2004-2012 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "Embedder.h"
#include <DistGeom/BoundsMatrix.h>
#include <DistGeom/DistGeomUtils.h>
#include <DistGeom/TriangleSmooth.h>
#include <DistGeom/ChiralViolationContrib.h>
#include "BoundsMatrixBuilder.h"
#include <ForceField/ForceField.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/Atom.h>
#include <GraphMol/AtomIterators.h>
#include <GraphMol/Conformer.h>
#include <RDGeneral/types.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/Exceptions.h>
#include <Geometry/Transform3D.h>
#include <Numerics/Alignment/AlignPoints.h>
#include <DistGeom/ChiralSet.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/ForceFieldHelpers/CrystalFF/TorsionPreferences.h>
#include <boost/dynamic_bitset.hpp>
#include <iomanip>
#include <RDGeneral/RDThreads.h>
#define ERROR_TOL 0.00001
namespace RDKit {
namespace DGeomHelpers {
typedef std::pair<int, int> INT_PAIR;
typedef std::vector<INT_PAIR> INT_PAIR_VECT;
bool _sameSide(const RDGeom::Point3D &v1, const RDGeom::Point3D &v2,
const RDGeom::Point3D &v3, const RDGeom::Point3D &v4,
const RDGeom::Point3D &p0, double tol = 0.1) {
RDGeom::Point3D normal = (v2 - v1).crossProduct(v3 - v1);
double d1 = normal.dotProduct(v4 - v1);
double d2 = normal.dotProduct(p0 - v1);
// std::cerr<<" "<<d1<<" - " <<d2<<std::endl;
if (fabs(d1) < tol || fabs(d2) < tol) return false;
return !((d1 < 0.) ^ (d2 < 0.));
}
bool _centerInVolume(const DistGeom::ChiralSetPtr &chiralSet,
const RDGeom::PointPtrVect &positions) {
if (chiralSet->d_idx0 ==
chiralSet->d_idx4) { // this happens for three-coordinate centers
return true;
}
RDGeom::Point3D p0((*positions[chiralSet->d_idx0])[0],
(*positions[chiralSet->d_idx0])[1],
(*positions[chiralSet->d_idx0])[2]);
RDGeom::Point3D p1((*positions[chiralSet->d_idx1])[0],
(*positions[chiralSet->d_idx1])[1],
(*positions[chiralSet->d_idx1])[2]);
RDGeom::Point3D p2((*positions[chiralSet->d_idx2])[0],
(*positions[chiralSet->d_idx2])[1],
(*positions[chiralSet->d_idx2])[2]);
RDGeom::Point3D p3((*positions[chiralSet->d_idx3])[0],
(*positions[chiralSet->d_idx3])[1],
(*positions[chiralSet->d_idx3])[2]);
RDGeom::Point3D p4((*positions[chiralSet->d_idx4])[0],
(*positions[chiralSet->d_idx4])[1],
(*positions[chiralSet->d_idx4])[2]);
// RDGeom::Point3D centroid = (p1+p2+p3+p4)/4.;
bool res = _sameSide(p1, p2, p3, p4, p0) && _sameSide(p2, p3, p4, p1, p0) &&
_sameSide(p3, p4, p1, p2, p0) && _sameSide(p4, p1, p2, p3, p0);
// std::cerr<<"civ:"<<chiralSet->d_idx0<<" "<<chiralSet->d_idx1<<"
// "<<chiralSet->d_idx2<<" "<<chiralSet->d_idx3<<"
// "<<chiralSet->d_idx4<<"->"<<res<<"|"<<std::endl;
return res;
}
bool _boundsFulfilled(const std::vector<int> &atoms,
const DistGeom::BoundsMatrix &mmat,
const RDGeom::PointPtrVect &positions) {
// unsigned int N = mmat.numRows();
// std::cerr << N << " " << atoms.size() << std::endl;
// loop over all pair of atoms
for (unsigned int i = 0; i < atoms.size() - 1; ++i) {
for (unsigned int j = i + 1; j < atoms.size(); ++j) {
int a1 = atoms[i];
int a2 = atoms[j];
RDGeom::Point3D p0((*positions[a1])[0], (*positions[a1])[1],
(*positions[a1])[2]);
RDGeom::Point3D p1((*positions[a2])[0], (*positions[a2])[1],
(*positions[a2])[2]);
double d2 = (p0 - p1).length(); // distance
double lb = mmat.getLowerBound(a1, a2);
double ub = mmat.getUpperBound(a1, a2); // bounds
if (((d2 < lb) && (fabs(d2 - lb) > 0.17)) ||
((d2 > ub) && (fabs(d2 - ub) > 0.17))) {
// std::cerr << a1 << " " << a2 << ":" << d2 << " " << lb << " " << ub
// << " " << fabs(d2-lb) << " " << fabs(d2-ub) << std::endl;
return false;
}
}
}
return true;
}
// the minimization using experimental torsion angle preferences
void _minimizeWithExpTorsions(
RDGeom::PointPtrVect &positions, DistGeom::BoundsMatPtr mmat,
double optimizerForceTol, double basinThresh,
const std::vector<std::pair<int, int> > &bonds,
const std::vector<std::vector<int> > &angles,
const std::vector<std::vector<int> > &expTorsionAtoms,
const std::vector<std::pair<std::vector<int>, std::vector<double> > >
&expTorsionAngles,
const std::vector<std::vector<int> > &improperAtoms,
const std::vector<int> &atomNums, bool useBasicKnowledge) {
RDUNUSED_PARAM(basinThresh);
// convert to 3D positions and create coordMap
RDGeom::Point3DPtrVect positions3D;
for (unsigned int p = 0; p < positions.size(); ++p) {
positions3D.push_back(new RDGeom::Point3D(
(*positions[p])[0], (*positions[p])[1], (*positions[p])[2]));
}
// create the force field
ForceFields::ForceField *field;
if (useBasicKnowledge) { // ETKDG or KDG
field = DistGeom::construct3DForceField(*mmat, positions3D, bonds, angles,
expTorsionAtoms, expTorsionAngles,
improperAtoms, atomNums);
} else { // plain ETDG
field = DistGeom::constructPlain3DForceField(*mmat, positions3D, bonds,
angles, expTorsionAtoms,
expTorsionAngles, atomNums);
}
// minimize!
field->initialize();
// std::cout << "Field with torsion constraints: " << field->calcEnergy() << "
// " << ERROR_TOL << std::endl;
if (field->calcEnergy() > ERROR_TOL) {
// while (needMore) {
field->minimize(300, optimizerForceTol);
// ++nPasses;
//}
}
// std::cout << field->calcEnergy() << std::endl;
delete field;
// overwrite positions and delete the 3D ones
for (unsigned int i = 0; i < positions3D.size(); ++i) {
(*positions[i])[0] = (*positions3D[i])[0];
(*positions[i])[1] = (*positions3D[i])[1];
(*positions[i])[2] = (*positions3D[i])[2];
delete positions3D[i];
}
}
bool _embedPoints(
RDGeom::PointPtrVect *positions, const DistGeom::BoundsMatPtr mmat,
bool useRandomCoords, double boxSizeMult, bool randNegEig,
unsigned int numZeroFail, double optimizerForceTol, double basinThresh,
int seed, unsigned int maxIterations,
const DistGeom::VECT_CHIRALSET *chiralCenters, bool enforceChirality,
bool useExpTorsionAnglePrefs, bool useBasicKnowledge,
const std::vector<std::pair<int, int> > &bonds,
const std::vector<std::vector<int> > &angles,
const std::vector<std::vector<int> > &expTorsionAtoms,
const std::vector<std::pair<std::vector<int>, std::vector<double> > >
&expTorsionAngles,
const std::vector<std::vector<int> > &improperAtoms,
const std::vector<int> &atomNums) {
unsigned int nat = positions->size();
if (maxIterations == 0) {
maxIterations = 10 * nat;
}
RDNumeric::DoubleSymmMatrix distMat(nat, 0.0);
// The basin threshold just gets us into trouble when we're using
// random coordinates since it ends up ignoring 1-4 (and higher)
// interactions. This causes us to get folded-up (and self-penetrating)
// conformations for large flexible molecules
if (useRandomCoords) basinThresh = 1e8;
RDKit::double_source_type *rng = 0;
RDKit::rng_type *generator;
RDKit::uniform_double *distrib;
if (seed > 0) {
generator = new RDKit::rng_type(42u);
generator->seed(seed);
distrib = new RDKit::uniform_double(0.0, 1.0);
rng = new RDKit::double_source_type(*generator, *distrib);
} else {
rng = &RDKit::getDoubleRandomSource();
}
bool gotCoords = false;
unsigned int iter = 0;
double largestDistance = -1.0;
RDUNUSED_PARAM(largestDistance);
while ((gotCoords == false) && (iter < maxIterations)) {
++iter;
if (!useRandomCoords) {
largestDistance = DistGeom::pickRandomDistMat(*mmat, distMat, *rng);
gotCoords = DistGeom::computeInitialCoords(distMat, *positions, *rng,
randNegEig, numZeroFail);
} else {
double boxSize;
if (boxSizeMult > 0) {
boxSize = 5. * boxSizeMult;
} else {
boxSize = -1 * boxSizeMult;
}
gotCoords = DistGeom::computeRandomCoords(*positions, boxSize, *rng);
}
if (gotCoords) {
ForceFields::ForceField *field = DistGeom::constructForceField(
*mmat, *positions, *chiralCenters, 1.0, 0.1, 0, basinThresh);
unsigned int nPasses = 0;
field->initialize();
// std::cerr<<"FIELD E: "<<field->calcEnergy()<<std::endl;
if (field->calcEnergy() > ERROR_TOL) {
int needMore = 1;
while (needMore) {
needMore = field->minimize(400, optimizerForceTol);
++nPasses;
}
}
delete field;
field = NULL;
// std::cerr<<" "<<field->calcEnergy()<<" after npasses:
// "<<nPasses<<std::endl;
// Check if any of our chiral centers are badly out of whack. If so, try
// again
if (enforceChirality && chiralCenters->size() > 0) {
// check the chiral volume:
BOOST_FOREACH (DistGeom::ChiralSetPtr chiralSet, *chiralCenters) {
double vol = DistGeom::ChiralViolationContrib::calcChiralVolume(
chiralSet->d_idx1, chiralSet->d_idx2, chiralSet->d_idx3,
chiralSet->d_idx4, *positions);
double lb = chiralSet->getLowerVolumeBound();
double ub = chiralSet->getUpperVolumeBound();
if ((lb > 0 && vol < lb && (lb - vol) / lb > .2) ||
(ub < 0 && vol > ub && (vol - ub) / ub > .2)) {
// std::cerr<<" fail! ("<<chiralSet->d_idx0<<") iter: "<<iter<<"
// "<<vol<<" "<<lb<<"-"<<ub<<std::endl;
gotCoords = false;
break;
}
}
}
// now redo the minimization if we have a chiral center
// or have started from random coords. This
// time removing the chiral constraints and
// increasing the weight on the fourth dimension
if (gotCoords && (chiralCenters->size() > 0 || useRandomCoords)) {
ForceFields::ForceField *field2 = DistGeom::constructForceField(
*mmat, *positions, *chiralCenters, 0.2, 1.0, 0, basinThresh);
field2->initialize();
// std::cerr<<"FIELD2 E: "<<field2->calcEnergy()<<std::endl;
if (field2->calcEnergy() > ERROR_TOL) {
int needMore = 1;
int nPasses2 = 0;
while (needMore) {
needMore = field2->minimize(200, optimizerForceTol);
++nPasses2;
}
// std::cerr<<" "<<field2->calcEnergy()<<" after npasses2:
// "<<nPasses2<<std::endl;
}
delete field2;
}
// (ET)(K)DG
if (gotCoords && (useExpTorsionAnglePrefs || useBasicKnowledge)) {
_minimizeWithExpTorsions(*positions, mmat, optimizerForceTol,
basinThresh, bonds, angles, expTorsionAtoms,
expTorsionAngles, improperAtoms, atomNums,
useBasicKnowledge);
}
// test if chirality is correct
if (enforceChirality && gotCoords && (chiralCenters->size() > 0)) {
// "distance matrix" chirality test
std::set<int> atoms;
BOOST_FOREACH (DistGeom::ChiralSetPtr chiralSet, *chiralCenters) {
if (chiralSet->d_idx0 != chiralSet->d_idx4) {
atoms.insert(chiralSet->d_idx0);
atoms.insert(chiralSet->d_idx1);
atoms.insert(chiralSet->d_idx2);
atoms.insert(chiralSet->d_idx3);
atoms.insert(chiralSet->d_idx4);
}
}
std::vector<int> atomsToCheck(atoms.begin(), atoms.end());
if (atomsToCheck.size() > 0) {
if (!_boundsFulfilled(atomsToCheck, *mmat, *positions)) {
gotCoords = false;
}
}
// "center in volume" chirality test
if (gotCoords) {
BOOST_FOREACH (DistGeom::ChiralSetPtr chiralSet, *chiralCenters) {
// it could happen that the centroid is outside the volume defined
// by the other
// four points. That is also a fail.
if (!_centerInVolume(chiralSet, *positions)) {
// std::cerr<<" fail2! ("<<chiralSet->d_idx0<<") iter:
// "<<iter<<std::endl;
gotCoords = false;
break;
}
}
}
}
} // if(gotCoords)
} // while
if (seed > 0 && rng) {
delete rng;
delete generator;
delete distrib;
}
return gotCoords;
}
void _findChiralSets(const ROMol &mol,
DistGeom::VECT_CHIRALSET &chiralCenters) {
ROMol::ConstAtomIterator ati;
INT_VECT nbrs;
ROMol::OEDGE_ITER beg, end;
// Atom *oatom;
for (ati = mol.beginAtoms(); ati != mol.endAtoms(); ati++) {
if ((*ati)->getAtomicNum() != 1) { // skip hydrogens
Atom::ChiralType chiralType = (*ati)->getChiralTag();
if (chiralType == Atom::CHI_TETRAHEDRAL_CW ||
chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
// make a chiral set from the neighbors
nbrs.clear();
nbrs.reserve(4);
// find the neighbors of this atom and enter them into the
// nbr list
boost::tie(beg, end) = mol.getAtomBonds(*ati);
while (beg != end) {
nbrs.push_back(mol[*beg]->getOtherAtom(*ati)->getIdx());
++beg;
}
// if we have less than 4 heavy atoms as neighbors,
// we need to include the chiral center into the mix
// we should at least have 3 though
bool includeSelf = false;
RDUNUSED_PARAM(includeSelf);
CHECK_INVARIANT(nbrs.size() >= 3, "Cannot be a chiral center");
if (nbrs.size() < 4) {
nbrs.insert(nbrs.end(), (*ati)->getIdx());
includeSelf = true;
}
// now create a chiral set and set the upper and lower bound on the
// volume
if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
// postive chiral volume
DistGeom::ChiralSet *cset = new DistGeom::ChiralSet(
(*ati)->getIdx(), nbrs[0], nbrs[1], nbrs[2], nbrs[3], 5.0, 100.0);
DistGeom::ChiralSetPtr cptr(cset);
chiralCenters.push_back(cptr);
} else {
DistGeom::ChiralSet *cset =
new DistGeom::ChiralSet((*ati)->getIdx(), nbrs[0], nbrs[1],
nbrs[2], nbrs[3], -100.0, -5.0);
DistGeom::ChiralSetPtr cptr(cset);
chiralCenters.push_back(cptr);
}
} // if block -chirality check
} // if block - heavy atom check
} // for loop over atoms
} // end of _findChiralSets
void _fillAtomPositions(RDGeom::Point3DConstPtrVect &pts,
const Conformer &conf) {
unsigned int na = conf.getNumAtoms();
pts.clear();
unsigned int ai;
pts.reserve(na);
for (ai = 0; ai < na; ++ai) {
pts.push_back(&conf.getAtomPos(ai));
}
}
bool _isConfFarFromRest(const ROMol &mol, const Conformer &conf,
double threshold) {
// NOTE: it is tempting to use some triangle inequality to prune
// conformations here but some basic testing has shown very
// little advantage and given that the time for pruning fades in
// comparison to embedding - we will use a simple for loop below
// over all conformation until we find a match
ROMol::ConstConformerIterator confi;
RDGeom::Point3DConstPtrVect refPoints, prbPoints;
_fillAtomPositions(refPoints, conf);
bool res = true;
unsigned int na = conf.getNumAtoms();
double ssrThres = na * threshold * threshold;
RDGeom::Transform3D trans;
double ssr;
for (confi = mol.beginConformers(); confi != mol.endConformers(); confi++) {
_fillAtomPositions(prbPoints, *(*confi));
ssr = RDNumeric::Alignments::AlignPoints(refPoints, prbPoints, trans);
if (ssr < ssrThres) {
res = false;
break;
}
}
return res;
}
int EmbedMolecule(ROMol &mol, unsigned int maxIterations, int seed,
bool clearConfs, bool useRandomCoords, double boxSizeMult,
bool randNegEig, unsigned int numZeroFail,
const std::map<int, RDGeom::Point3D> *coordMap,
double optimizerForceTol, bool ignoreSmoothingFailures,
bool enforceChirality, bool useExpTorsionAnglePrefs,
bool useBasicKnowledge, bool verbose, double basinThresh) {
INT_VECT confIds;
EmbedMultipleConfs(mol, confIds, 1, 1, maxIterations, seed, clearConfs,
useRandomCoords, boxSizeMult, randNegEig, numZeroFail,
-1.0, coordMap, optimizerForceTol, ignoreSmoothingFailures,
enforceChirality, useExpTorsionAnglePrefs,
useBasicKnowledge, verbose, basinThresh);
int res;
if (confIds.size()) {
res = confIds[0];
} else {
res = -1;
}
return res;
}
void adjustBoundsMatFromCoordMap(
DistGeom::BoundsMatPtr mmat, unsigned int nAtoms,
const std::map<int, RDGeom::Point3D> *coordMap) {
RDUNUSED_PARAM(nAtoms);
// std::cerr<<std::endl;
// for(unsigned int i=0;i<nAtoms;++i){
// for(unsigned int j=0;j<nAtoms;++j){
// std::cerr<<" "<<std::setprecision(3)<<mmat->getVal(i,j);
// }
// std::cerr<<std::endl;
// }
// std::cerr<<std::endl;
for (std::map<int, RDGeom::Point3D>::const_iterator iIt = coordMap->begin();
iIt != coordMap->end(); ++iIt) {
int iIdx = iIt->first;
const RDGeom::Point3D &iPoint = iIt->second;
std::map<int, RDGeom::Point3D>::const_iterator jIt = iIt;
while (++jIt != coordMap->end()) {
int jIdx = jIt->first;
const RDGeom::Point3D &jPoint = jIt->second;
double dist = (iPoint - jPoint).length();
mmat->setUpperBound(iIdx, jIdx, dist);
mmat->setLowerBound(iIdx, jIdx, dist);
}
}
// std::cerr<<std::endl;
// for(unsigned int i=0;i<nAtoms;++i){
// for(unsigned int j=0;j<nAtoms;++j){
// std::cerr<<" "<<std::setprecision(3)<<mmat->getVal(i,j);
// }
// std::cerr<<std::endl;
// }
// std::cerr<<std::endl;
}
namespace detail {
typedef struct {
boost::dynamic_bitset<> *confsOk;
bool fourD;
INT_VECT *fragMapping;
std::vector<Conformer *> *confs;
unsigned int fragIdx;
DistGeom::BoundsMatPtr mmat;
bool useRandomCoords;
double boxSizeMult;
bool randNegEig;
unsigned int numZeroFail;
double optimizerForceTol;
double basinThresh;
int seed;
unsigned int maxIterations;
DistGeom::VECT_CHIRALSET const *chiralCenters;
bool enforceChirality;
bool useExpTorsionAnglePrefs;
bool useBasicKnowledge;
std::vector<std::pair<int, int> > *bonds;
std::vector<std::vector<int> > *angles;
std::vector<std::vector<int> > *expTorsionAtoms;
std::vector<std::pair<std::vector<int>, std::vector<double> > >
*expTorsionAngles;
std::vector<std::vector<int> > *improperAtoms;
std::vector<int> *atomNums;
} EmbedArgs;
void embedHelper_(int threadId, int numThreads, EmbedArgs *eargs) {
unsigned int nAtoms = eargs->mmat->numRows();
RDGeom::PointPtrVect positions;
for (unsigned int i = 0; i < nAtoms; ++i) {
if (eargs->fourD) {
positions.push_back(new RDGeom::PointND(4));
} else {
positions.push_back(new RDGeom::Point3D());
}
}
for (size_t ci = 0; ci < eargs->confs->size(); ci++) {
if (rdcast<int>(ci % numThreads) != threadId) continue;
if (!(*eargs->confsOk)[ci]) {
// if one of the fragments here has already failed, there's no
// sense in embedding this one
continue;
}
bool gotCoords = _embedPoints(
&positions, eargs->mmat, eargs->useRandomCoords, eargs->boxSizeMult,
eargs->randNegEig, eargs->numZeroFail, eargs->optimizerForceTol,
eargs->basinThresh, (ci + 1) * eargs->seed, eargs->maxIterations,
eargs->chiralCenters, eargs->enforceChirality,
eargs->useExpTorsionAnglePrefs, eargs->useBasicKnowledge, *eargs->bonds,
*eargs->angles, *eargs->expTorsionAtoms, *eargs->expTorsionAngles,
*eargs->improperAtoms, *eargs->atomNums);
if (gotCoords) {
Conformer *conf = (*eargs->confs)[ci];
unsigned int fragAtomIdx = 0;
for (unsigned int i = 0; i < (*eargs->confs)[0]->getNumAtoms(); ++i) {
if ((*eargs->fragMapping)[i] == static_cast<int>(eargs->fragIdx)) {
conf->setAtomPos(i, RDGeom::Point3D((*positions[fragAtomIdx])[0],
(*positions[fragAtomIdx])[1],
(*positions[fragAtomIdx])[2]));
++fragAtomIdx;
}
}
} else {
(*eargs->confsOk)[ci] = 0;
}
}
for (unsigned int i = 0; i < nAtoms; ++i) {
delete positions[i];
}
}
} // end of namespace detail
void EmbedMultipleConfs(ROMol &mol, INT_VECT &res, unsigned int numConfs,
int numThreads, unsigned int maxIterations, int seed,
bool clearConfs, bool useRandomCoords,
double boxSizeMult, bool randNegEig,
unsigned int numZeroFail, double pruneRmsThresh,
const std::map<int, RDGeom::Point3D> *coordMap,
double optimizerForceTol, bool ignoreSmoothingFailures,
bool enforceChirality, bool useExpTorsionAnglePrefs,
bool useBasicKnowledge, bool verbose,
double basinThresh) {
if (!mol.getNumAtoms()) {
throw ValueErrorException("molecule has no atoms");
}
INT_VECT fragMapping;
std::vector<ROMOL_SPTR> molFrags =
MolOps::getMolFrags(mol, true, &fragMapping);
if (molFrags.size() > 1 && coordMap) {
BOOST_LOG(rdWarningLog)
<< "Constrained conformer generation (via the coordMap argument) does "
"not work with molecules that have multiple fragments."
<< std::endl;
coordMap = 0;
}
std::vector<Conformer *> confs;
confs.reserve(numConfs);
for (unsigned int i = 0; i < numConfs; ++i) {
confs.push_back(new Conformer(mol.getNumAtoms()));
}
boost::dynamic_bitset<> confsOk(numConfs);
confsOk.set();
if (clearConfs) {
res.clear();
mol.clearConformers();
}
for (unsigned int fragIdx = 0; fragIdx < molFrags.size(); ++fragIdx) {
ROMOL_SPTR piece = molFrags[fragIdx];
unsigned int nAtoms = piece->getNumAtoms();
DistGeom::BoundsMatrix *mat = new DistGeom::BoundsMatrix(nAtoms);
DistGeom::BoundsMatPtr mmat(mat);
initBoundsMat(mmat);
double tol = 0.0;
std::vector<std::vector<int> > expTorsionAtoms;
std::vector<std::pair<std::vector<int>, std::vector<double> > >
expTorsionAngles;
std::vector<std::vector<int> > improperAtoms;
std::vector<std::pair<int, int> > bonds;
std::vector<std::vector<int> > angles;
std::vector<int> atomNums(nAtoms);
if (useExpTorsionAnglePrefs || useBasicKnowledge) {
ForceFields::CrystalFF::getExperimentalTorsions(
*piece, expTorsionAtoms, expTorsionAngles, improperAtoms,
useExpTorsionAnglePrefs, useBasicKnowledge, verbose);
setTopolBounds(*piece, mmat, bonds, angles, true, false);
for (unsigned int i = 0; i < nAtoms; ++i) {
atomNums[i] = (*piece).getAtomWithIdx(i)->getAtomicNum();
}
} else {
setTopolBounds(*piece, mmat, true, false);
}
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
tol = 0.05;
}
if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
// ok this bound matrix failed to triangle smooth - re-compute the bounds
// matrix
// without 15 bounds and with VDW scaling
initBoundsMat(mmat);
setTopolBounds(*piece, mmat, false, true);
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
}
// try triangle smoothing again
if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
// ok, we're not going to be able to smooth this,
if (ignoreSmoothingFailures) {
// proceed anyway with the more relaxed bounds matrix
initBoundsMat(mmat);
setTopolBounds(*piece, mmat, false, true);
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
}
} else {
BOOST_LOG(rdWarningLog)
<< "Could not triangle bounds smooth molecule." << std::endl;
return;
}
}
}
#if 0
for(unsigned int li=0;li<piece->getNumAtoms();++li){
for(unsigned int lj=li+1;lj<piece->getNumAtoms();++lj){
std::cerr<<" ("<<li<<","<<lj<<"): "<<mat->getLowerBound(li,lj)<<" -> "<<mat->getUpperBound(li,lj)<<std::endl;
}
}
#endif
// find all the chiral centers in the molecule
DistGeom::VECT_CHIRALSET chiralCenters;
MolOps::assignStereochemistry(*piece);
_findChiralSets(*piece, chiralCenters);
// if we have any chiral centers or are using random coordinates, we will
// first embed the molecule in four dimensions, otherwise we will use 3D
bool fourD = false;
if (useRandomCoords || chiralCenters.size() > 0) {
fourD = true;
}
#ifdef RDK_THREADSAFE_SSS
boost::thread_group tg;
#endif
numThreads = getNumThreadsToUse(numThreads);
detail::EmbedArgs eargs = {&confsOk,
fourD,
&fragMapping,
&confs,
fragIdx,
mmat,
useRandomCoords,
boxSizeMult,
randNegEig,
numZeroFail,
optimizerForceTol,
basinThresh,
seed,
maxIterations,
&chiralCenters,
enforceChirality,
useExpTorsionAnglePrefs,
useBasicKnowledge,
&bonds,
&angles,
&expTorsionAtoms,
&expTorsionAngles,
&improperAtoms,
&atomNums};
if (numThreads == 1) {
detail::embedHelper_(0, 1, &eargs);
}
#ifdef RDK_THREADSAFE_SSS
else {
for (int tid = 0; tid < numThreads; ++tid) {
tg.add_thread(
new boost::thread(detail::embedHelper_, tid, numThreads, &eargs));
}
tg.join_all();
}
#endif
}
for (unsigned int ci = 0; ci < confs.size(); ++ci) {
Conformer *conf = confs[ci];
if (confsOk[ci]) {
// check if we are pruning away conformations and
// a closeby conformation has already been chosen :
if (pruneRmsThresh > 0.0 &&
!_isConfFarFromRest(mol, *conf, pruneRmsThresh)) {
delete conf;
} else {
int confId = (int)mol.addConformer(conf, true);
res.push_back(confId);
}
} else {
delete conf;
}
}
}
INT_VECT EmbedMultipleConfs(
ROMol &mol, unsigned int numConfs, unsigned int maxIterations, int seed,
bool clearConfs, bool useRandomCoords, double boxSizeMult, bool randNegEig,
unsigned int numZeroFail, double pruneRmsThresh,
const std::map<int, RDGeom::Point3D> *coordMap, double optimizerForceTol,
bool ignoreSmoothingFailures, bool enforceChirality,
bool useExpTorsionAnglePrefs, bool useBasicKnowledge, bool verbose,
double basinThresh) {
INT_VECT res;
EmbedMultipleConfs(
mol, res, numConfs, 1, maxIterations, seed, clearConfs, useRandomCoords,
boxSizeMult, randNegEig, numZeroFail, pruneRmsThresh, coordMap,
optimizerForceTol, ignoreSmoothingFailures, enforceChirality,
useExpTorsionAnglePrefs, useBasicKnowledge, verbose, basinThresh);
return res;
}
} // end of namespace DGeomHelpers
} // end of namespace RDKit
|