1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
//
// Copyright (C) 2013 Greg Landrum and NextMove Software
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "ProximityBonds.h"
#include <algorithm>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/RWMol.h>
#include <GraphMol/MonomerInfo.h>
namespace RDKit {
static const double EXTDIST = 0.45;
// static const double MAXRAD = 2.50;
// static const double MINDIST = 0.40;
static const double MAXDIST = 5.45; // 2*MAXRAD + EXTDIST
static const double MINDIST2 = 0.16; // MINDIST*MINDIST
static const double MAXDIST2 = 29.7025; // MAXDIST*MAXDIST
struct ProximityEntry {
float x, y, z, r;
int atm, hash, next;
bool operator<(const ProximityEntry &p) const { return x < p.x; }
};
static bool IsBonded(ProximityEntry *p, ProximityEntry *q) {
double dx = (double)p->x - (double)q->x;
double dist2 = dx * dx;
if (dist2 > MAXDIST2) return false;
double dy = (double)p->y - (double)q->y;
dist2 += dy * dy;
if (dist2 > MAXDIST2) return false;
double dz = (double)p->z - (double)q->z;
dist2 += dz * dz;
if (dist2 > MAXDIST2 || dist2 < MINDIST2) return false;
double radius = (double)p->r + (double)q->r + EXTDIST;
return dist2 <= radius * radius;
}
/*
static void ConnectTheDots_Small(RWMol *mol)
{
unsigned int count = mol->getNumAtoms();
ProximityEntry *tmp = (ProximityEntry*)malloc(count*sizeof(ProximityEntry));
PeriodicTable *table = PeriodicTable::getTable();
Conformer *conf = &mol->getConformer();
for (unsigned int i=0; i<count; i++) {
Atom *atom = mol->getAtomWithIdx(i);
unsigned int elem = atom->getAtomicNum();
RDGeom::Point3D p = conf->getAtomPos(i);
ProximityEntry *tmpi = tmp+i;
tmpi->x = (float)p.x;
tmpi->y = (float)p.y;
tmpi->z = (float)p.z;
tmpi->r = (float)table->getRcovalent(elem);
for (unsigned int j=0; j<i; j++) {
ProximityEntry *tmpj = tmp+j;
if (IsBonded(tmpi,tmpj) && !mol->getBondBetweenAtoms(i,j))
mol->addBond(i,j,Bond::SINGLE);
}
}
free(tmp);
}
static void ConnectTheDots_Medium(RWMol *mol)
{
int count = mol->getNumAtoms();
std::vector<ProximityEntry> tmp(count);
PeriodicTable *table = PeriodicTable::getTable();
Conformer *conf = &mol->getConformer();
for (int i=0; i<count; i++) {
Atom *atom = mol->getAtomWithIdx(i);
unsigned int elem = atom->getAtomicNum();
RDGeom::Point3D p = conf->getAtomPos(i);
ProximityEntry *tmpi = &tmp[i];
tmpi->x = (float)p.x;
tmpi->y = (float)p.y;
tmpi->z = (float)p.z;
tmpi->r = (float)table->getRcovalent(elem);
tmpi->atm = i;
}
std::stable_sort(tmp.begin(),tmp.end());
for (int j=0; j<count; j++) {
ProximityEntry *tmpj = &tmp[j];
double limit = tmpj->x - MAXDIST;
for (int k=j-1; k>=0; k--) {
ProximityEntry *tmpk = &tmp[k];
if (tmpk->x < limit)
break;
if (IsBonded(tmpj,tmpk) &&
!mol->getBondBetweenAtoms(tmpj->atm,tmpk->atm))
mol->addBond(tmpj->atm,tmpk->atm,Bond::SINGLE);
}
}
}
*/
#define HASHSIZE 1024
#define HASHMASK 1023
#define HASHX 571
#define HASHY 127
#define HASHZ 3
static void ConnectTheDots_Large(RWMol *mol) {
int HashTable[HASHSIZE];
memset(HashTable, -1, sizeof(HashTable));
unsigned int count = mol->getNumAtoms();
ProximityEntry *tmp =
(ProximityEntry *)malloc(count * sizeof(ProximityEntry));
PeriodicTable *table = PeriodicTable::getTable();
Conformer *conf = &mol->getConformer();
for (unsigned int i = 0; i < count; i++) {
Atom *atom = mol->getAtomWithIdx(i);
unsigned int elem = atom->getAtomicNum();
RDGeom::Point3D p = conf->getAtomPos(i);
ProximityEntry *tmpi = tmp + i;
tmpi->x = (float)p.x;
tmpi->y = (float)p.y;
tmpi->z = (float)p.z;
tmpi->r = (float)table->getRcovalent(elem);
tmpi->atm = i;
int hash = HASHX * (int)(p.x / MAXDIST) + HASHY * (int)(p.y / MAXDIST) +
HASHZ * (int)(p.z / MAXDIST);
for (int dx = -HASHX; dx <= HASHX; dx += HASHX)
for (int dy = -HASHY; dy <= HASHY; dy += HASHY)
for (int dz = -HASHZ; dz <= HASHZ; dz += HASHZ) {
int probe = hash + dx + dy + dz;
int list = HashTable[probe & HASHMASK];
while (list != -1) {
ProximityEntry *tmpj = &tmp[list];
if (tmpj->hash == probe && IsBonded(tmpi, tmpj) &&
!mol->getBondBetweenAtoms(tmpi->atm, tmpj->atm))
mol->addBond(tmpi->atm, tmpj->atm, Bond::SINGLE);
list = tmpj->next;
}
}
int list = hash & HASHMASK;
tmpi->next = HashTable[list];
HashTable[list] = i;
tmpi->hash = hash;
}
free(tmp);
}
void ConnectTheDots(RWMol *mol) {
if (!mol || !mol->getNumConformers()) return;
// Determine optimal algorithm to use by getNumAtoms()?
ConnectTheDots_Large(mol);
}
bool SamePDBResidue(AtomPDBResidueInfo *p, AtomPDBResidueInfo *q) {
return p->getResidueNumber() == q->getResidueNumber() &&
p->getResidueName() == q->getResidueName() &&
p->getChainId() == q->getChainId() &&
p->getInsertionCode() == q->getInsertionCode();
}
// These are macros to allow their use in C++ constants
#define BCNAM(A, B, C) (((A) << 16) | ((B) << 8) | (C))
#define BCATM(A, B, C, D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))
static bool StandardPDBDoubleBond(unsigned int rescode, unsigned int atm1,
unsigned int atm2) {
if (atm1 > atm2) {
unsigned int tmp = atm1;
atm1 = atm2;
atm2 = tmp;
}
switch (rescode) {
case BCNAM('A', 'L', 'A'):
case BCNAM('C', 'Y', 'S'):
case BCNAM('G', 'L', 'Y'):
case BCNAM('I', 'L', 'E'):
case BCNAM('L', 'E', 'U'):
case BCNAM('L', 'Y', 'S'):
case BCNAM('M', 'E', 'T'):
case BCNAM('P', 'R', 'O'):
case BCNAM('S', 'E', 'R'):
case BCNAM('T', 'H', 'R'):
case BCNAM('V', 'A', 'L'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
break;
case BCNAM('A', 'R', 'G'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'Z', ' ') &&
atm2 == BCATM(' ', 'N', 'H', '2'))
return true;
break;
case BCNAM('A', 'S', 'N'):
case BCNAM('A', 'S', 'P'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'G', ' ') &&
atm2 == BCATM(' ', 'O', 'D', '1'))
return true;
break;
case BCNAM('G', 'L', 'N'):
case BCNAM('G', 'L', 'U'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'D', ' ') &&
atm2 == BCATM(' ', 'O', 'E', '1'))
return true;
break;
case BCNAM('H', 'I', 'S'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'D', '2') &&
atm2 == BCATM(' ', 'C', 'G', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'E', '1') &&
atm2 == BCATM(' ', 'N', 'D', '1'))
return true;
break;
case BCNAM('P', 'H', 'E'):
case BCNAM('T', 'Y', 'R'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'D', '1') &&
atm2 == BCATM(' ', 'C', 'G', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'D', '2') &&
atm2 == BCATM(' ', 'C', 'E', '2'))
return true;
if (atm1 == BCATM(' ', 'C', 'E', '1') &&
atm2 == BCATM(' ', 'C', 'Z', ' '))
return true;
break;
case BCNAM('T', 'R', 'P'):
if (atm1 == BCATM(' ', 'C', ' ', ' ') &&
atm2 == BCATM(' ', 'O', ' ', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'D', '1') &&
atm2 == BCATM(' ', 'C', 'G', ' '))
return true;
if (atm1 == BCATM(' ', 'C', 'D', '2') &&
atm2 == BCATM(' ', 'C', 'E', '2'))
return true;
if (atm1 == BCATM(' ', 'C', 'E', '3') &&
atm2 == BCATM(' ', 'C', 'Z', '3'))
return true;
if (atm1 == BCATM(' ', 'C', 'H', '2') &&
atm2 == BCATM(' ', 'C', 'Z', '2'))
return true;
break;
}
return false;
}
static bool StandardPDBDoubleBond(RWMol *mol, Atom *beg, Atom *end) {
AtomPDBResidueInfo *bInfo = (AtomPDBResidueInfo *)beg->getMonomerInfo();
if (!bInfo || bInfo->getMonomerType() != AtomMonomerInfo::PDBRESIDUE)
return false;
AtomPDBResidueInfo *eInfo = (AtomPDBResidueInfo *)end->getMonomerInfo();
if (!eInfo || eInfo->getMonomerType() != AtomMonomerInfo::PDBRESIDUE)
return false;
if (!SamePDBResidue(bInfo, eInfo)) return false;
if (bInfo->getIsHeteroAtom() || eInfo->getIsHeteroAtom()) return false;
const char *ptr = bInfo->getResidueName().c_str();
unsigned int rescode = BCNAM(ptr[0], ptr[1], ptr[2]);
ptr = bInfo->getName().c_str();
unsigned int atm1 = BCATM(ptr[0], ptr[1], ptr[2], ptr[3]);
ptr = eInfo->getName().c_str();
unsigned int atm2 = BCATM(ptr[0], ptr[1], ptr[2], ptr[3]);
if (!StandardPDBDoubleBond(rescode, atm1, atm2)) return false;
// Check that neither end already has a double bond
ROMol::OBOND_ITER_PAIR bp;
for (bp = mol->getAtomBonds(beg); bp.first != bp.second; ++bp.first)
if ((*mol)[*bp.first].get()->getBondType() == Bond::DOUBLE) return false;
for (bp = mol->getAtomBonds(end); bp.first != bp.second; ++bp.first)
if ((*mol)[*bp.first].get()->getBondType() == Bond::DOUBLE) return false;
return true;
}
void StandardPDBResidueBondOrders(RWMol *mol) {
RWMol::BondIterator bondIt;
for (bondIt = mol->beginBonds(); bondIt != mol->endBonds(); ++bondIt) {
Bond *bond = *bondIt;
if (bond->getBondType() == Bond::SINGLE) {
Atom *beg = bond->getBeginAtom();
Atom *end = bond->getEndAtom();
if (StandardPDBDoubleBond(mol, beg, end)) bond->setBondType(Bond::DOUBLE);
}
}
}
} // namespace RDKit
|