File: rdMetricMatrixCalc.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (304 lines) | stat: -rw-r--r-- 12,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// $Id$
//
//  Copyright (C) 2003-2008 Greg Landrum and Rational Discovery LLC
//
//  @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#define PY_ARRAY_UNIQUE_SYMBOL rdmetric_array_API
#include <RDBoost/python.h>
#include <RDBoost/boost_numpy.h>

#include <RDBoost/PySequenceHolder.h>
#include <RDBoost/Wrap.h>
#include <RDBoost/import_array.h>

#include <RDGeneral/types.h>

#include <DataManip/MetricMatrixCalc/MetricMatrixCalc.h>
#include <DataManip/MetricMatrixCalc/MetricFuncs.h>
#include <DataStructs/BitVects.h>
#include <string>

using namespace RDDataManip;

void wrap_MMcalc();

namespace python = boost::python;
namespace RDDataManip {

PyObject *getEuclideanDistMat(python::object descripMat) {
  // Bit of a pain involved here, we accept three types of PyObjects here
  // 1. A Numeric Array
  //     - first find what 'type' of entry we have (float, double and int is all
  //     we recognize for now)
  //     - then point to contiguous piece of memory from the array that contains
  //     the data with a type*
  //     - then make a new type** pointer so that double index into this
  //     contiguous memory will work
  //       and then pass it along to the distance calculator
  // 2. A list of Numeric Vector (or 1D arrays)
  //     - in this case wrap descripMat with a PySequenceHolder<type*> where
  //     type is the
  //       type of entry in vector (accepted types are int, double and float
  //     - Then pass the PySequenceHolder to the metrci calculator
  // 3. A list (or tuple) of lists (or tuple)
  //     - In this case other than wrapping descripMat with a PySequenceHolder
  //       each of the indivual list in there are also wrapped by a
  //       PySequenceHolder
  //     - so the distance calculator is passed in a
  //     "PySequenceHolder<PySequenceHolder<double>>"
  //     - FIX: not that we always convert entry values to double here, even if
  //     we passed
  //       in a list of list of ints (or floats). Given that lists can be
  //       heterogeneous, I do not
  //       know how to ask a list what type of entries if contains.
  //
  //  OK my brain is going to explode now

  // first deal with situation where we have an Numeric Array
  PyObject *descMatObj = descripMat.ptr();
  PyArrayObject *distRes;
  if (PyArray_Check(descMatObj)) {
    // get the dimensions of the array
    int nrows = PyArray_DIM((PyArrayObject *)descMatObj, 0);
    int ncols = PyArray_DIM((PyArrayObject *)descMatObj, 1);
    int i;
    CHECK_INVARIANT((nrows > 0) && (ncols > 0), "");

    npy_intp dMatLen = nrows * (nrows - 1) / 2;

    // now that we have the dimensions declare the distance matrix which is
    // always a
    // 1D double array
    distRes = (PyArrayObject *)PyArray_SimpleNew(1, &dMatLen, NPY_DOUBLE);

    // grab a pointer to the data in the array so that we can directly put
    // values in there
    // and avoid copying :
    double *dMat = (double *)PyArray_DATA(distRes);

    PyArrayObject *copy;
    copy = (PyArrayObject *)PyArray_ContiguousFromObject(
        descMatObj, PyArray_DESCR((PyArrayObject *)descMatObj)->type_num, 2, 2);
    // if we have double array
    if (PyArray_DESCR((PyArrayObject *)descMatObj)->type_num == NPY_DOUBLE) {
      double *desc = (double *)PyArray_DATA((PyArrayObject *)descMatObj);

      // REVIEW: create an adaptor object to hold a double * and support
      //  operator[]() so that we don't have to do this stuff:

      // here is the 2D array trick this so that when the distance calaculator
      // asks for desc2D[i] we basically get the ith row as double*
      auto **desc2D = new double *[nrows];
      for (i = 0; i < nrows; i++) {
        desc2D[i] = desc;
        desc += ncols;
      }
      MetricMatrixCalc<double **, double *> mmCalc;
      mmCalc.setMetricFunc(&EuclideanDistanceMetric<double *, double *>);
      mmCalc.calcMetricMatrix(desc2D, nrows, ncols, dMat);

      delete[] desc2D;
      // we got the distance matrix we are happy so return
      return PyArray_Return(distRes);
    }

    // if we have a float array
    else if (PyArray_DESCR((PyArrayObject *)descMatObj)->type_num ==
             NPY_FLOAT) {
      float *desc = (float *)PyArray_DATA(copy);
      auto **desc2D = new float *[nrows];
      for (i = 0; i < nrows; i++) {
        desc2D[i] = desc;
        desc += ncols;
      }
      MetricMatrixCalc<float **, float *> mmCalc;
      mmCalc.setMetricFunc(&EuclideanDistanceMetric<float *, float *>);
      mmCalc.calcMetricMatrix(desc2D, nrows, ncols, dMat);
      delete[] desc2D;
      return PyArray_Return(distRes);
    }

    // if we have an interger array
    else if (PyArray_DESCR((PyArrayObject *)descMatObj)->type_num == NPY_INT) {
      int *desc = (int *)PyArray_DATA(copy);
      auto **desc2D = new int *[nrows];
      for (i = 0; i < nrows; i++) {
        desc2D[i] = desc;
        desc += ncols;
      }
      MetricMatrixCalc<int **, int *> mmCalc;
      mmCalc.setMetricFunc(&EuclideanDistanceMetric<int *, int *>);
      mmCalc.calcMetricMatrix(desc2D, nrows, ncols, dMat);
      delete[] desc2D;
      return PyArray_Return(distRes);
    } else {
      // unreconiged type for the matrix, throw up
      throw_value_error(
          "The array has to be of type int, float, or double for "
          "GetEuclideanDistMat");
    }
  }  // done with an array input
  else {
    // REVIEW: removed a ton of code here

    // we have probably have a list or a tuple

    unsigned int ncols = 0;
    unsigned int nrows =
        python::extract<unsigned int>(descripMat.attr("__len__")());
    CHECK_INVARIANT(nrows > 0, "Empty list passed in");

    npy_intp dMatLen = nrows * (nrows - 1) / 2;
    distRes = (PyArrayObject *)PyArray_SimpleNew(1, &dMatLen, NPY_DOUBLE);
    double *dMat = (double *)PyArray_DATA(distRes);

    // assume that we a have a list of list of values (that can be extracted to
    // double)
    std::vector<PySequenceHolder<double> > dData;
    dData.reserve(nrows);
    for (unsigned int i = 0; i < nrows; i++) {
      // PySequenceHolder<double> row(seq[i]);
      PySequenceHolder<double> row(descripMat[i]);
      if (i == 0) {
        ncols = row.size();
      } else if (row.size() != ncols) {
        throw_value_error("All subsequences must be the same length");
      }
      dData.push_back(row);
    }

    MetricMatrixCalc<std::vector<PySequenceHolder<double> >,
                     PySequenceHolder<double> > mmCalc;
    mmCalc.setMetricFunc(&EuclideanDistanceMetric<PySequenceHolder<double>,
                                                  PySequenceHolder<double> >);
    mmCalc.calcMetricMatrix(dData, nrows, ncols, dMat);
  }
  return PyArray_Return(distRes);
}

PyObject *getTanimotoDistMat(python::object bitVectList) {
  // we will assume here that we have a either a list of ExplicitBitVectors or
  // SparseBitVects
  int nrows = python::extract<int>(bitVectList.attr("__len__")());
  CHECK_INVARIANT(nrows > 1, "");

  // First check what type of vector we have
  python::object v1 = bitVectList[0];
  python::extract<ExplicitBitVect> ebvWorks(v1);
  python::extract<SparseBitVect> sbvWorks(v1);
  if (!ebvWorks.check() && !sbvWorks.check()) {
    throw_value_error(
        "GetTanimotoDistMat can only take a sequence of ExplicitBitVects or "
        "SparseBitvects");
  }

  npy_intp dMatLen = nrows * (nrows - 1) / 2;
  PyArrayObject *simRes =
      (PyArrayObject *)PyArray_SimpleNew(1, &dMatLen, NPY_DOUBLE);
  double *sMat = (double *)PyArray_DATA(simRes);

  if (ebvWorks.check()) {
    PySequenceHolder<ExplicitBitVect> dData(bitVectList);
    MetricMatrixCalc<PySequenceHolder<ExplicitBitVect>, ExplicitBitVect> mmCalc;
    mmCalc.setMetricFunc(
        &TanimotoDistanceMetric<ExplicitBitVect, ExplicitBitVect>);
    mmCalc.calcMetricMatrix(dData, nrows, 0, sMat);
  } else if (sbvWorks.check()) {
    PySequenceHolder<SparseBitVect> dData(bitVectList);
    MetricMatrixCalc<PySequenceHolder<SparseBitVect>, SparseBitVect> mmCalc;
    mmCalc.setMetricFunc(&TanimotoDistanceMetric<SparseBitVect, SparseBitVect>);
    mmCalc.calcMetricMatrix(dData, nrows, 0, sMat);
  }
  return PyArray_Return(simRes);
}

PyObject *getTanimotoSimMat(python::object bitVectList) {
  // we will assume here that we have a either a list of ExplicitBitVectors or
  // SparseBitVects
  int nrows = python::extract<int>(bitVectList.attr("__len__")());
  CHECK_INVARIANT(nrows > 1, "");

  // First check what type of vector we have
  python::object v1 = bitVectList[0];
  python::extract<ExplicitBitVect> ebvWorks(v1);
  python::extract<SparseBitVect> sbvWorks(v1);
  if (!ebvWorks.check() && !sbvWorks.check()) {
    throw_value_error(
        "GetTanimotoDistMat can only take a sequence of ExplicitBitVects or "
        "SparseBitvects");
  }

  npy_intp dMatLen = nrows * (nrows - 1) / 2;
  PyArrayObject *simRes =
      (PyArrayObject *)PyArray_SimpleNew(1, &dMatLen, NPY_DOUBLE);
  double *sMat = (double *)PyArray_DATA(simRes);

  if (ebvWorks.check()) {
    PySequenceHolder<ExplicitBitVect> dData(bitVectList);
    MetricMatrixCalc<PySequenceHolder<ExplicitBitVect>, ExplicitBitVect> mmCalc;
    mmCalc.setMetricFunc(
        &TanimotoSimilarityMetric<ExplicitBitVect, ExplicitBitVect>);
    mmCalc.calcMetricMatrix(dData, nrows, 0, sMat);
  } else if (sbvWorks.check()) {
    PySequenceHolder<SparseBitVect> dData(bitVectList);
    MetricMatrixCalc<PySequenceHolder<SparseBitVect>, SparseBitVect> mmCalc;
    mmCalc.setMetricFunc(
        &TanimotoSimilarityMetric<SparseBitVect, SparseBitVect>);
    mmCalc.calcMetricMatrix(dData, nrows, 0, sMat);
  }
  return PyArray_Return(simRes);
}
}

BOOST_PYTHON_MODULE(rdMetricMatrixCalc) {
  python::scope().attr("__doc__") =
      "Module containing the calculator for metric matrix calculation, \n"
      "e.g. similarity and distance matrices";

  rdkit_import_array();

  std::string docString;
  docString =
      "Compute the distance matrix from a descriptor matrix using the Euclidean distance metric\n\n\
  ARGUMENTS: \n\
\n\
    descripMat - A python object of any one of the following types \n\
                   1. A numeric array of dimensions n by m where n is the number of items in the data set \n\
                       and m is the number of descriptors \n\
                   2. A list of Numeric Vectors (or 1D arrays), each entry in the list corresponds \n\
                       to descriptor vector for one item \n\
                   3. A list (or tuple) of lists (or tuples) of values, where the values can be extracted to \n\
                       double. \n\n\
  RETURNS: \n\
    A numeric one-dimensional array containing the lower triangle elements of the symmetric distance matrix\n\n";
  python::def("GetEuclideanDistMat", RDDataManip::getEuclideanDistMat,
              docString.c_str());

  docString =
      "Compute the distance matrix from a list of BitVects using the Tanimoto distance metric\n\n\
  ARGUMENTS: \n\
\n\
    bitVectList - a list of bit vectors. Currently this works only for a list of explicit bit vectors, \n\
                  needs to be expanded to support a list of SparseBitVects\n\n\
  RETURNS: \n\
    A numeric 1 dimensional array containing the lower triangle elements of the\n\
    symmetric distance matrix\n\n";
  python::def("GetTanimotoDistMat", RDDataManip::getTanimotoDistMat,
              docString.c_str());

  docString =
      "Compute the similarity matrix from a list of BitVects \n\n\
  ARGUMENTS: \n\
\n\
    bitVectList - a list of bit vectors. Currently this works only for a list of explicit bit vectors, \n\
                  needs to be expanded to support a list of SparseBitVects\n\n\
  RETURNS: \n\
    A numeric 1 dimensional array containing the lower triangle elements of the symmetric similarity matrix\n\n";
  python::def("GetTanimotoSimMat", RDDataManip::getTanimotoSimMat,
              docString.c_str());
}