1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
//
// Copyright (c) 2016 Greg Landrum
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
// Implementation details here are taken from the file fpb_io.py from chemfp
// (www.chemfp.org)
// Many thanks to Andrew Dalke for creating such great software and for
// helping explain the FPB implementation
#include <DataStructs/ExplicitBitVect.h>
#include <DataStructs/BitOps.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/StreamOps.h>
#include <RDGeneral/Ranking.h>
#include "FPBReader.h"
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
namespace RDKit {
namespace detail {
const unsigned int magicSize = 8;
const std::string FPB_MAGIC("FPB1\r\n\0\0", 8);
const unsigned int tagNameSize = 4;
struct FPBReader_impl {
unsigned int len;
unsigned int nBits;
boost::uint32_t numBytesStoredPerFingerprint;
std::vector<boost::uint32_t> popCountOffsets;
const boost::uint8_t *dp_fpData; // do not free this
boost::scoped_array<boost::uint8_t> dp_arenaChunk;
boost::uint32_t num4ByteElements, num8ByteElements; // for finding ids
const boost::uint8_t *dp_idOffsets; // do not free this
boost::scoped_array<boost::uint8_t> dp_idChunk;
bool df_lazy; // read the fp data lazily. In this case we use fpDataOffset
// and seek instead of using dp_fpData
std::streampos fpDataOffset; // file offset from tellg
std::streampos idDataOffset; // file offset from tellg
std::streampos idChunkOffset; // file offset from tellg
std::istream *istrm; // we don't own this, it's just used for the lazy reader
};
// the caller is responsible for calling delete[] on `data`
void readChunkDetails(std::istream &istrm, std::string &nm,
boost::uint64_t &sz) {
streamRead(istrm, sz);
char tag[tagNameSize + 1];
tag[tagNameSize] = 0;
istrm.read(tag, tagNameSize);
nm = tag;
}
void readChunkData(std::istream &istrm, boost::uint64_t &sz,
boost::uint8_t *&data) {
if (sz) {
data = new boost::uint8_t[sz];
istrm.read(reinterpret_cast<char *>(data), sz);
} else {
data = nullptr;
}
// std::cerr << " CHUNKSZ: " << sz << " name: " << nm << std::endl;
}
void extractPopCounts(FPBReader_impl *dp_impl, boost::uint64_t sz,
const boost::uint8_t *chunk) {
PRECONDITION(dp_impl, "bad pointer");
/* this section of the FPB format is under-documented in Andrew's code,
* fortunately it looks pretty simple
*/
if (sz % 4)
throw ValueErrorException("POPC chunk size must be a multiple of 4 bytes");
unsigned int nEntries = sz / 4;
if (nEntries < 9)
throw ValueErrorException("POPC must contain at least 9 offsets");
dp_impl->popCountOffsets.reserve(nEntries);
for (unsigned int i = 0; i < nEntries; ++i) {
dp_impl->popCountOffsets.push_back(
*reinterpret_cast<const boost::uint32_t *>(chunk));
chunk += 4;
}
};
//-----------------------------------------------------
// Arena procesing
/* Documentation from Andrew's code on the structure of the arena:
The 'AREN'a starts with a header:
<num_bytes: 4 bytes> -- the number of bytes in a fingerprint
<storage_size: 4 bytes> -- number of bytes in fingerprint + extra bytes
<spacer_size: 1 byte> -- the number of spacer bytes used so the fingerprint
chunk starts on an aligned file position.
<spacer : $spacer_size> NUL bytes> -- up to 255 NUL bytes, used for alignment.
The fingerprints are N fingerprint fields, ordered sequentially.
<fp0: $storage_size bytes> -- the first fingerprint
<fp1: $storage_size bytes> -- the second fingerprint
...
The last fingerprint ends at the last byte of the arena chunk.
Each fingerprint contains:
<fingerprint: $num_bytes bytes> -- the actual fingerprint data
<extra: $storage_size-$num_bytes bytes> -- the 'extra' NULL padding bytes
used so storage_size is a multiple of the alignment.
To get the number of fingerprints in the arena:
(len(arena content) - 4 - 4 - 1 - $spacer_size) // $storage_size
*/
void extractArenaDetails(FPBReader_impl *dp_impl, boost::uint64_t sz) {
PRECONDITION(dp_impl, "bad pointer");
PRECONDITION(dp_impl->df_lazy, "should only be used in lazy mode");
boost::uint32_t numBytesPerFingerprint;
streamRead(*dp_impl->istrm, numBytesPerFingerprint);
dp_impl->nBits = numBytesPerFingerprint * 8;
boost::uint32_t numBytesStoredPerFingerprint;
streamRead(*dp_impl->istrm, numBytesStoredPerFingerprint);
dp_impl->numBytesStoredPerFingerprint = numBytesStoredPerFingerprint;
boost::uint8_t spacer;
streamRead(*dp_impl->istrm, spacer);
dp_impl->len = (sz - 9 - spacer) / numBytesStoredPerFingerprint;
// streamRead(*dp_impl->istrm, spacer);
// now move forward the length of the spacer
if (spacer)
dp_impl->istrm->seekg(static_cast<std::streamoff>(spacer),
std::ios_base::cur);
dp_impl->fpDataOffset = dp_impl->istrm->tellg();
dp_impl->istrm->seekg(
static_cast<std::streamoff>(numBytesStoredPerFingerprint * dp_impl->len),
std::ios_base::cur);
}
void extractArena(FPBReader_impl *dp_impl, boost::uint64_t sz,
const boost::uint8_t *chunk) {
PRECONDITION(dp_impl, "bad pointer");
boost::uint32_t numBytesPerFingerprint =
*reinterpret_cast<const boost::uint32_t *>(chunk);
dp_impl->nBits = numBytesPerFingerprint * 8;
chunk += sizeof(boost::uint32_t);
dp_impl->numBytesStoredPerFingerprint =
*reinterpret_cast<const boost::uint32_t *>(chunk);
chunk += sizeof(boost::uint32_t);
boost::uint8_t spacer = *reinterpret_cast<const boost::uint8_t *>(chunk);
chunk += 1;
// now move forward the length of the spacer
chunk += spacer;
dp_impl->dp_fpData = chunk;
dp_impl->len = (sz - 9 - spacer) / dp_impl->numBytesStoredPerFingerprint;
};
// if dp_impl->df_lazy is true, we'll use the memory in fpData (should be large
// enough to hold the result!), otherwise
// we update it to a pointer to the memory dp_impl owns.
void extractBytes(const FPBReader_impl *dp_impl, unsigned int which,
boost::uint8_t *&fpData, unsigned int nToRead = 1) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION((dp_impl->df_lazy || dp_impl->dp_fpData), "bad fpdata pointer");
PRECONDITION(!dp_impl->df_lazy || dp_impl->istrm, "no stream in lazy mode");
PRECONDITION(!dp_impl->df_lazy || fpData, "no fpData in lazy mode");
PRECONDITION(nToRead > 0, "bad nToRead");
if (which + nToRead > dp_impl->len) {
throw ValueErrorException("bad index");
}
boost::uint64_t offset = which * dp_impl->numBytesStoredPerFingerprint;
if (!dp_impl->df_lazy) {
fpData = const_cast<boost::uint8_t *>(dp_impl->dp_fpData) + offset;
} else {
dp_impl->istrm->seekg(dp_impl->fpDataOffset +
static_cast<std::streampos>(offset));
dp_impl->istrm->read(reinterpret_cast<char *>(fpData),
nToRead * dp_impl->numBytesStoredPerFingerprint);
}
};
// the caller is responsible for delete[]'ing this
boost::uint8_t *copyBytes(const FPBReader_impl *dp_impl, unsigned int which) {
PRECONDITION(dp_impl, "bad reader pointer");
boost::uint8_t *res;
res = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint];
if (!dp_impl->df_lazy) {
boost::uint8_t *fpData = nullptr;
extractBytes(dp_impl, which, fpData);
memcpy(static_cast<void *>(res), fpData,
dp_impl->numBytesStoredPerFingerprint);
} else {
extractBytes(dp_impl, which, res);
}
return res;
};
// caller is responsible for delete'ing the result
RDKIT_DATASTRUCTS_EXPORT boost::dynamic_bitset<> *bytesToBitset(const boost::uint8_t *fpData,
boost::uint32_t nBits) {
unsigned int nBytes = nBits / 8;
if (!(nBytes % sizeof(boost::dynamic_bitset<>::block_type))) {
// I believe this could be faster (needs to be verified of course)
unsigned int nBlocks = nBytes / sizeof(boost::dynamic_bitset<>::block_type);
const boost::dynamic_bitset<>::block_type *fpBlocks =
reinterpret_cast<const boost::dynamic_bitset<>::block_type *>(fpData);
return new boost::dynamic_bitset<>(fpBlocks, fpBlocks + nBlocks);
} else {
return reinterpret_cast<boost::dynamic_bitset<> *>(
new boost::dynamic_bitset<boost::uint8_t>(fpData, fpData + nBytes));
}
}
// caller is responsible for delete []'ing the result
RDKIT_DATASTRUCTS_EXPORT boost::uint8_t *bitsetToBytes(const boost::dynamic_bitset<> &bitset) {
unsigned int nBits = bitset.size();
unsigned int nBytes = nBits / 8;
auto *res = new boost::uint8_t[nBytes];
boost::to_block_range(
bitset, reinterpret_cast<boost::dynamic_bitset<>::block_type *>(res));
return res;
}
// the caller is responsible for delete'ing this
ExplicitBitVect *extractFP(const FPBReader_impl *dp_impl, unsigned int which) {
PRECONDITION(dp_impl, "bad reader pointer");
boost::uint8_t *fpData;
if (dp_impl->df_lazy) {
fpData = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint];
}
extractBytes(dp_impl, which, fpData);
boost::dynamic_bitset<> *resDBS = bytesToBitset(fpData, dp_impl->nBits);
if (dp_impl->df_lazy) delete[] fpData;
return new ExplicitBitVect(resDBS);
};
double tanimoto(const FPBReader_impl *dp_impl, unsigned int which,
const ::boost::uint8_t *bv) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION(bv, "bad bv pointer");
if (which >= dp_impl->len) {
throw ValueErrorException("bad index");
}
boost::uint8_t *fpData;
if (dp_impl->df_lazy) {
fpData = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint];
}
extractBytes(dp_impl, which, fpData);
double res =
CalcBitmapTanimoto(fpData, bv, dp_impl->numBytesStoredPerFingerprint);
if (dp_impl->df_lazy) delete[] fpData;
return res;
};
double tversky(const FPBReader_impl *dp_impl, unsigned int which,
const ::boost::uint8_t *bv, double ca, double cb) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION(bv, "bad bv pointer");
if (which >= dp_impl->len) {
throw ValueErrorException("bad index");
}
boost::uint8_t *fpData;
if (dp_impl->df_lazy) {
fpData = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint];
}
extractBytes(dp_impl, which, fpData);
double res = CalcBitmapTversky(fpData, bv,
dp_impl->numBytesStoredPerFingerprint, ca, cb);
if (dp_impl->df_lazy) delete[] fpData;
return res;
};
//-----------------------------------------------------
// Id procesing
/* Documentation from Andrew's code on the structure of the arena:
The actual layout inside of the chunk is:
<num_4byte_elements: 4 bytes> -- the number of 4 byte offsets.
<num_8byte_elements: 4 bytes> -- the number of 8 byte offsets
Note: the number of indicies is num_4byte_elements + num_8byte_elements + 1
because even with no elements there will be the initial '\0\0\0\0'.
<id 0> + NUL -- the first string, with an added NUL terminator
<id 1> + NUL -- the second string, with an added NUL terminator
....
<id N> + NUL -- the last string, with an added NUL terminator
<offset 0: 4 bytes> -- the offset relative to the start of <text 0>.
(This always contains the 4 bytes "\0\0\0\0")
...
<offset num_4byte_elements: 4 bytes> -- the last offset stored in 4 bytes
(Note: This next section exists only when <num 8 byte offsets> > 0)
<offset num_4byte_elements+1: 8 bytes> -- the first offset stored in 8
bytes
...
<offset num_4byte_elements+num_8byte_elements: 8 bytes> -- the last offset
stored in 8 bytes
To get the identifier for record at position P >= 0:
chunk_size = size of the chunk
num_4byte_elements = decode bytes[0:4] as uint32
num_8byte_elements = decode bytes[4:8] as uint32
if P >= num_4byte_elements + num_8byte_elements:
record does not exist
offset_start = chunk_size - num_4byte_elements*4 - num_8byte_elements*8
if P < num_4byte_elements:
start, end = decode bytes[offset_start:offset_start+8] as (uint32, uint32)
elif P == N4:
start, end = decode bytes[offset_start:offset_start+12] as (uint32,
uint64)
else:
start, end = decode bytes[offset_start:offset_start+16] as (uint64,
uint64)
id = bytes[start:end-1]
*/
void extractIdsDetails(FPBReader_impl *dp_impl, boost::uint64_t sz) {
PRECONDITION(dp_impl, "bad pointer");
std::streampos start = dp_impl->istrm->tellg();
dp_impl->idChunkOffset = start;
streamRead(*dp_impl->istrm, dp_impl->num4ByteElements);
streamRead(*dp_impl->istrm, dp_impl->num8ByteElements);
dp_impl->idDataOffset = static_cast<boost::uint64_t>(start) + sz -
(dp_impl->num4ByteElements + 1) * 4 -
dp_impl->num8ByteElements * 8;
dp_impl->istrm->seekg(start + static_cast<std::streampos>(sz),
std::ios_base::beg);
};
void extractIds(FPBReader_impl *dp_impl, boost::uint64_t sz,
const boost::uint8_t *chunk) {
PRECONDITION(dp_impl, "bad pointer");
dp_impl->num4ByteElements = *reinterpret_cast<const boost::uint32_t *>(chunk);
chunk += sizeof(boost::uint32_t);
dp_impl->num8ByteElements = *reinterpret_cast<const boost::uint32_t *>(chunk);
chunk += sizeof(boost::uint32_t);
dp_impl->dp_idOffsets = dp_impl->dp_idChunk.get() + sz -
(dp_impl->num4ByteElements + 1) * 4 -
dp_impl->num8ByteElements * 8;
};
std::string extractId(const FPBReader_impl *dp_impl, unsigned int which) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION((dp_impl->df_lazy || dp_impl->dp_idOffsets),
"bad idOffsets pointer");
PRECONDITION(!dp_impl->df_lazy || dp_impl->istrm, "no stream in lazy mode");
if (which >= dp_impl->num4ByteElements + dp_impl->num8ByteElements) {
throw ValueErrorException("bad index");
}
std::string res;
boost::uint64_t offset = 0, len = 0;
if (which < dp_impl->num4ByteElements) {
if (!dp_impl->df_lazy) {
offset = *reinterpret_cast<const boost::uint32_t *>(
dp_impl->dp_idOffsets + which * 4);
len = *reinterpret_cast<const boost::uint32_t *>(dp_impl->dp_idOffsets +
(which + 1) * 4);
} else {
dp_impl->istrm->seekg(dp_impl->idDataOffset +
static_cast<std::streampos>(which * 4));
dp_impl->istrm->read(reinterpret_cast<char *>(&offset), 4);
dp_impl->istrm->read(reinterpret_cast<char *>(&len), 4);
}
} else if (which == dp_impl->num4ByteElements) {
// FIX: this code path is not yet tested
if (!dp_impl->df_lazy) {
offset = *reinterpret_cast<const boost::uint32_t *>(
dp_impl->dp_idOffsets + which * 4);
len = *reinterpret_cast<const boost::uint64_t *>(dp_impl->dp_idOffsets +
(which + 1) * 4);
} else {
dp_impl->istrm->seekg(dp_impl->idDataOffset +
static_cast<std::streampos>(which * 4));
dp_impl->istrm->read(reinterpret_cast<char *>(&offset), 4);
dp_impl->istrm->read(reinterpret_cast<char *>(&len), 8);
}
} else {
// FIX: this code path is not yet tested
if (!dp_impl->df_lazy) {
offset = *reinterpret_cast<const boost::uint64_t *>(
dp_impl->dp_idOffsets + dp_impl->num4ByteElements * 4 + which * 8);
len = *reinterpret_cast<const boost::uint64_t *>(
dp_impl->dp_idOffsets + dp_impl->num4ByteElements * 4 +
(which + 1) * 8);
} else {
dp_impl->istrm->seekg(dp_impl->idDataOffset +
static_cast<std::streampos>(
dp_impl->num4ByteElements * 4 + which * 8));
dp_impl->istrm->read(reinterpret_cast<char *>(&offset), 8);
dp_impl->istrm->read(reinterpret_cast<char *>(&len), 8);
}
}
len -= offset;
if (!dp_impl->df_lazy) {
res = std::string(
reinterpret_cast<const char *>(dp_impl->dp_idChunk.get() + offset),
len);
} else {
boost::shared_array<char> buff(new char[len + 1]);
buff[len] = 0;
dp_impl->istrm->seekg(dp_impl->idChunkOffset +
static_cast<std::streampos>(offset));
dp_impl->istrm->read(reinterpret_cast<char *>(buff.get()), len);
res = std::string(reinterpret_cast<const char *>(buff.get()));
}
return res;
};
void tanimotoNeighbors(const FPBReader_impl *dp_impl, const boost::uint8_t *bv,
double threshold,
std::vector<std::pair<double, unsigned int> > &res,
bool usePopcountScreen, unsigned int readCache = 1000) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION(bv, "bad bv");
RANGE_CHECK(-1e-6, threshold, 1.0 + 1e-6);
PRECONDITION(readCache > 0, "bad cache size");
res.clear();
boost::uint64_t probeCount =
CalcBitmapPopcount(bv, dp_impl->numBytesStoredPerFingerprint);
boost::uint64_t startScan = 0, endScan = dp_impl->len;
if (usePopcountScreen &&
dp_impl->popCountOffsets.size() == dp_impl->nBits + 2) {
// figure out the bounds based on equation 24 from:
// 1. Swamidass, S. J. & Baldi, P. Bounds and Algorithms for Fast Exact
// Searches of Chemical Fingerprints in Linear and Sublinear Time. J. Chem.
// Inf. Model. 47, 302–317 (2007).
// http://pubs.acs.org/doi/abs/10.1021/ci600358f
boost::uint32_t minDbCount =
static_cast<boost::uint32_t>(floor(threshold * probeCount));
boost::uint32_t maxDbCount =
(threshold > 1e-6)
? static_cast<boost::uint32_t>(ceil(probeCount / threshold))
: dp_impl->numBytesStoredPerFingerprint;
// std::cerr << "probeCount: " << probeCount << " bounds: " << minDbCount
// << "-" << maxDbCount << std::endl;
startScan = dp_impl->popCountOffsets[minDbCount];
endScan = dp_impl->popCountOffsets[maxDbCount + 1];
// std::cerr << " scan: " << startScan << "-" << endScan << std::endl;
}
boost::uint8_t *dbv;
if (dp_impl->df_lazy) {
dbv = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint * readCache];
}
for (boost::uint64_t i = startScan; i < endScan; i += readCache) {
unsigned int toRead = readCache;
if (i + toRead >= endScan) {
toRead = endScan - i;
}
extractBytes(dp_impl, i, dbv, toRead);
for (unsigned int j = 0; j < toRead; ++j) {
double tani =
CalcBitmapTanimoto(dbv + j * dp_impl->numBytesStoredPerFingerprint,
bv, dp_impl->numBytesStoredPerFingerprint);
if (tani >= threshold) {
res.push_back(std::make_pair(tani, i + j));
}
}
}
if (dp_impl->df_lazy) delete[] dbv;
}
void tverskyNeighbors(const FPBReader_impl *dp_impl, const boost::uint8_t *bv,
double ca, double cb, double threshold,
std::vector<std::pair<double, unsigned int> > &res,
bool usePopcountScreen) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION(bv, "bad bv");
RANGE_CHECK(-1e-6, threshold, 1.0 + 1e-6);
res.clear();
boost::uint64_t probeCount =
CalcBitmapPopcount(bv, dp_impl->numBytesStoredPerFingerprint);
boost::uint64_t startScan = 0, endScan = dp_impl->len;
if (usePopcountScreen &&
dp_impl->popCountOffsets.size() == dp_impl->nBits + 2) {
// figure out the bounds based on equation 25 from:
// 1. Swamidass, S. J. & Baldi, P. Bounds and Algorithms for Fast Exact
// Searches of Chemical Fingerprints in Linear and Sublinear Time. J. Chem.
// Inf. Model. 47, 302–317 (2007).
// http://pubs.acs.org/doi/abs/10.1021/ci600358f
boost::uint32_t minDbCount = static_cast<boost::uint32_t>(floor(
(threshold * probeCount * ca) / (1. - threshold + threshold * ca)));
boost::uint32_t maxDbCount =
((threshold * cb) > 1e-6)
? static_cast<boost::uint32_t>(
ceil(probeCount * (1 - threshold + threshold * cb) /
(threshold * cb)))
: dp_impl->numBytesStoredPerFingerprint;
// std::cerr << "probeCount: " << probeCount << " bounds: " << minDbCount
// << "-" << maxDbCount << std::endl;
startScan = dp_impl->popCountOffsets[minDbCount];
endScan = dp_impl->popCountOffsets[maxDbCount + 1];
// std::cerr << " scan: " << startScan << "-" << endScan << std::endl;
}
boost::uint8_t *dbv;
if (dp_impl->df_lazy) {
dbv = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint];
}
for (boost::uint64_t i = startScan; i < endScan; ++i) {
extractBytes(dp_impl, i, dbv);
double sim = CalcBitmapTversky(
dbv, bv, dp_impl->numBytesStoredPerFingerprint, ca, cb);
// std::cerr << " i:" << i << " " << tani << " ? " << threshold <<
// std::endl;
if (sim >= threshold) {
res.push_back(std::make_pair(sim, i));
}
}
if (dp_impl->df_lazy) delete[] dbv;
}
void containingNeighbors(const FPBReader_impl *dp_impl,
const boost::uint8_t *bv,
std::vector<unsigned int> &res) {
PRECONDITION(dp_impl, "bad reader pointer");
PRECONDITION(bv, "bad bv");
res.clear();
boost::uint64_t probeCount =
CalcBitmapPopcount(bv, dp_impl->numBytesStoredPerFingerprint);
boost::uint64_t startScan = 0, endScan = dp_impl->len;
if (dp_impl->popCountOffsets.size() == dp_impl->nBits + 2) {
startScan = dp_impl->popCountOffsets[probeCount];
// std::cerr << " scan: " << startScan << "-" << endScan << std::endl;
}
boost::uint8_t *dbv;
if (dp_impl->df_lazy) {
dbv = new boost::uint8_t[dp_impl->numBytesStoredPerFingerprint];
}
for (boost::uint64_t i = startScan; i < endScan; ++i) {
extractBytes(dp_impl, i, dbv);
if (CalcBitmapAllProbeBitsMatch(bv, dbv,
dp_impl->numBytesStoredPerFingerprint)) {
res.push_back(i);
}
}
if (dp_impl->df_lazy) delete[] dbv;
}
} // end of detail namespace
void FPBReader::init() {
PRECONDITION(dp_istrm, "no stream");
if (df_init) return;
dp_impl = new detail::FPBReader_impl;
dp_impl->istrm = dp_istrm;
dp_impl->df_lazy = df_lazyRead;
char magic[detail::magicSize];
dp_istrm->read(magic, detail::magicSize);
if (detail::FPB_MAGIC != std::string(magic, detail::magicSize)) {
throw BadFileException("Invalid FPB magic");
}
while (1) {
if (dp_istrm->eof()) throw BadFileException("EOF hit before FEND record");
std::string chunkNm;
boost::uint64_t chunkSz;
boost::uint8_t *chunk = nullptr;
detail::readChunkDetails(*dp_istrm, chunkNm, chunkSz);
// std::cerr << " Chunk: " << chunkNm << " " << chunkSz << std::endl;
if (!df_lazyRead || (chunkNm != "AREN" && chunkNm != "FPID")) {
detail::readChunkData(*dp_istrm, chunkSz, chunk);
if (chunkNm == "FEND") {
break;
} else if (chunkNm == "POPC") {
detail::extractPopCounts(dp_impl, chunkSz, chunk);
} else if (chunkNm == "AREN") {
dp_impl->dp_arenaChunk.reset(chunk);
detail::extractArena(dp_impl, chunkSz, chunk);
chunk = nullptr;
} else if (chunkNm == "FPID") {
dp_impl->dp_idChunk.reset(chunk);
detail::extractIds(dp_impl, chunkSz, chunk);
chunk = nullptr;
} else if (chunkNm == "META") {
// currently ignored
} else if (chunkNm == "HASH") {
// currently ignored
} else {
BOOST_LOG(rdWarningLog) << "Unknown chunk: " << chunkNm << " ignored."
<< std::endl;
}
delete[] chunk;
} else {
// we are reading the AREN or FPID chunk in lazy mode, just get our
// position in
// the file.
if (chunkNm == "AREN") {
detail::extractArenaDetails(dp_impl, chunkSz);
} else if (chunkNm == "FPID") {
detail::extractIdsDetails(dp_impl, chunkSz);
}
}
}
if ((!df_lazyRead && !dp_impl->dp_arenaChunk) ||
(df_lazyRead && !dp_impl->fpDataOffset))
throw BadFileException("No AREN record found");
if ((!df_lazyRead && !dp_impl->dp_idChunk) ||
(df_lazyRead && !dp_impl->idDataOffset))
throw BadFileException("No FPID record found");
df_init = true;
};
void FPBReader::destroy() {
if (dp_impl) {
dp_impl->dp_arenaChunk.reset();
dp_impl->dp_idChunk.reset();
dp_impl->dp_fpData = nullptr;
dp_impl->dp_idOffsets = nullptr;
}
delete dp_impl;
dp_impl = nullptr;
};
boost::shared_ptr<ExplicitBitVect> FPBReader::getFP(unsigned int idx) const {
PRECONDITION(df_init, "not initialized");
return boost::shared_ptr<ExplicitBitVect>(detail::extractFP(dp_impl, idx));
};
boost::shared_array<boost::uint8_t> FPBReader::getBytes(
unsigned int idx) const {
PRECONDITION(df_init, "not initialized");
return boost::shared_array<boost::uint8_t>(detail::copyBytes(dp_impl, idx));
};
std::string FPBReader::getId(unsigned int idx) const {
PRECONDITION(df_init, "not initialized");
std::string res = detail::extractId(dp_impl, idx);
return res;
};
unsigned int FPBReader::length() const {
PRECONDITION(df_init, "not initialized");
PRECONDITION(dp_impl, "no impl");
return dp_impl->len;
};
unsigned int FPBReader::nBits() const {
PRECONDITION(df_init, "not initialized");
PRECONDITION(dp_impl, "no impl");
return dp_impl->nBits;
};
std::pair<unsigned int, unsigned int> FPBReader::getFPIdsInCountRange(
unsigned int minCount, unsigned int maxCount) {
PRECONDITION(df_init, "not initialized");
PRECONDITION(dp_impl, "no impl");
URANGE_CHECK(maxCount, dp_impl->nBits + 1);
PRECONDITION(maxCount >= minCount, "max < min");
if (dp_impl->popCountOffsets.size() == dp_impl->nBits + 2) {
return std::make_pair(dp_impl->popCountOffsets[minCount],
dp_impl->popCountOffsets[maxCount + 1]);
} else {
// we don't have popcounts, so we have to work for it.
// FIX: complete this
return std::make_pair(0, 0);
}
};
double FPBReader::getTanimoto(unsigned int idx,
const boost::uint8_t *bv) const {
PRECONDITION(df_init, "not initialized");
return detail::tanimoto(dp_impl, idx, bv);
}
double FPBReader::getTanimoto(unsigned int idx,
const ExplicitBitVect &ebv) const {
const boost::uint8_t *bv = detail::bitsetToBytes(*(ebv.dp_bits));
double res = getTanimoto(idx, bv);
delete[] bv;
return res;
}
std::vector<std::pair<double, unsigned int> > FPBReader::getTanimotoNeighbors(
const boost::uint8_t *bv, double threshold, bool usePopcountScreen) const {
PRECONDITION(df_init, "not initialized");
std::vector<std::pair<double, unsigned int> > res;
detail::tanimotoNeighbors(dp_impl, bv, threshold, res, usePopcountScreen);
std::sort(res.begin(), res.end(),
Rankers::pairGreater<double, unsigned int>());
return res;
}
std::vector<std::pair<double, unsigned int> > FPBReader::getTanimotoNeighbors(
const ExplicitBitVect &ebv, double threshold,
bool usePopcountScreen) const {
const boost::uint8_t *bv = detail::bitsetToBytes(*(ebv.dp_bits));
std::vector<std::pair<double, unsigned int> > res =
getTanimotoNeighbors(bv, threshold, usePopcountScreen);
delete[] bv;
return res;
}
double FPBReader::getTversky(unsigned int idx, const boost::uint8_t *bv,
double ca, double cb) const {
PRECONDITION(df_init, "not initialized");
return detail::tversky(dp_impl, idx, bv, ca, cb);
}
double FPBReader::getTversky(unsigned int idx, const ExplicitBitVect &ebv,
double ca, double cb) const {
const boost::uint8_t *bv = detail::bitsetToBytes(*(ebv.dp_bits));
double res = getTversky(idx, bv, ca, cb);
delete[] bv;
return res;
}
std::vector<std::pair<double, unsigned int> > FPBReader::getTverskyNeighbors(
const boost::uint8_t *bv, double ca, double cb, double threshold,
bool usePopcountScreen) const {
PRECONDITION(df_init, "not initialized");
std::vector<std::pair<double, unsigned int> > res;
detail::tverskyNeighbors(dp_impl, bv, ca, cb, threshold, res,
usePopcountScreen);
std::sort(res.begin(), res.end(),
Rankers::pairGreater<double, unsigned int>());
return res;
}
std::vector<std::pair<double, unsigned int> > FPBReader::getTverskyNeighbors(
const ExplicitBitVect &ebv, double ca, double cb, double threshold,
bool usePopcountScreen) const {
const boost::uint8_t *bv = detail::bitsetToBytes(*(ebv.dp_bits));
std::vector<std::pair<double, unsigned int> > res =
getTverskyNeighbors(bv, ca, cb, threshold, usePopcountScreen);
delete[] bv;
return res;
}
std::vector<unsigned int> FPBReader::getContainingNeighbors(
const boost::uint8_t *bv) const {
PRECONDITION(df_init, "not initialized");
std::vector<unsigned int> res;
detail::containingNeighbors(dp_impl, bv, res);
std::sort(res.begin(), res.end());
return res;
}
std::vector<unsigned int> FPBReader::getContainingNeighbors(
const ExplicitBitVect &ebv) const {
const boost::uint8_t *bv = detail::bitsetToBytes(*(ebv.dp_bits));
std::vector<unsigned int> res = getContainingNeighbors(bv);
delete[] bv;
return res;
}
} // end of RDKit namespace
|