File: DistGeomUtils.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (501 lines) | stat: -rw-r--r-- 16,421 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// $Id$
//
//  Copyright (C) 2004-2008 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "BoundsMatrix.h"
#include "DistGeomUtils.h"
#include "DistViolationContrib.h"
#include "ChiralViolationContrib.h"
#include "FourthDimContrib.h"
#include <Numerics/Matrix.h>
#include <Numerics/SymmMatrix.h>
#include <Numerics/Vector.h>
#include <RDGeneral/Invariant.h>
#include <Numerics/EigenSolvers/PowerEigenSolver.h>
#include <RDGeneral/utils.h>
#include <ForceField/ForceField.h>
#include <ForceField/UFF/DistanceConstraint.h>
#include <ForceField/UFF/AngleConstraint.h>
#include <ForceField/UFF/Inversion.h>
#include <GraphMol/ForceFieldHelpers/CrystalFF/TorsionAngleM6.h>
#include <boost/dynamic_bitset.hpp>

namespace DistGeom {
const double EIGVAL_TOL = 0.001;

double pickRandomDistMat(const BoundsMatrix &mmat,
                         RDNumeric::SymmMatrix<double> &distMat, int seed) {
  if (seed > 0) {
    RDKit::getRandomGenerator(seed);
  }
  return pickRandomDistMat(mmat, distMat, RDKit::getDoubleRandomSource());
}

double pickRandomDistMat(const BoundsMatrix &mmat,
                         RDNumeric::SymmMatrix<double> &distMat,
                         RDKit::double_source_type &rng) {
  // make sure the sizes match up
  unsigned int npt = mmat.numRows();
  CHECK_INVARIANT(npt == distMat.numRows(), "Size mismatch");

  double largestVal = -1.0;
  double *ddata = distMat.getData();
  for (unsigned int i = 1; i < npt; i++) {
    unsigned int id = i * (i + 1) / 2;
    for (unsigned int j = 0; j < i; j++) {
      double ub = mmat.getUpperBound(i, j);
      double lb = mmat.getLowerBound(i, j);
      CHECK_INVARIANT(ub >= lb, "");
      double rval = rng();
      // std::cerr<<i<<"-"<<j<<": "<<rval<<std::endl;
      double d = lb + (rval) * (ub - lb);
      ddata[id + j] = d;
      if (d > largestVal) {
        largestVal = d;
      }
    }
  }
  return largestVal;
}

bool computeInitialCoords(const RDNumeric::SymmMatrix<double> &distMat,
                          RDGeom::PointPtrVect &positions, bool randNegEig,
                          unsigned int numZeroFail, int seed) {
  if (seed > 0) {
    RDKit::getRandomGenerator(seed);
  }
  return computeInitialCoords(distMat, positions,
                              RDKit::getDoubleRandomSource(), randNegEig,
                              numZeroFail);
}
bool computeInitialCoords(const RDNumeric::SymmMatrix<double> &distMat,
                          RDGeom::PointPtrVect &positions,
                          RDKit::double_source_type &rng, bool randNegEig,
                          unsigned int numZeroFail) {
  unsigned int N = distMat.numRows();
  unsigned int nPt = positions.size();
  CHECK_INVARIANT(nPt == N, "Size mismatch");

  unsigned int dim = positions.front()->dimension();

  const double *data = distMat.getData();
  RDNumeric::SymmMatrix<double> sqMat(N), T(N, 0.0);
  RDNumeric::DoubleMatrix eigVecs(dim, N);
  RDNumeric::DoubleVector eigVals(dim);

  double *sqDat = sqMat.getData();

  unsigned int dSize = distMat.getDataSize();
  double sumSqD2 = 0.0;
  for (unsigned int i = 0; i < dSize; i++) {
    sqDat[i] = data[i] * data[i];
    sumSqD2 += sqDat[i];
  }
  sumSqD2 /= (N * N);

  RDNumeric::DoubleVector sqD0i(N, 0.0);
  double *sqD0iData = sqD0i.getData();
  for (unsigned int i = 0; i < N; i++) {
    for (unsigned int j = 0; j < N; j++) {
      sqD0iData[i] += sqMat.getVal(i, j);
    }
    sqD0iData[i] /= N;
    sqD0iData[i] -= sumSqD2;

    if ((sqD0iData[i] < EIGVAL_TOL) && (N > 3)) {
      return false;
    }
  }

  for (unsigned int i = 0; i < N; i++) {
    for (unsigned int j = 0; j <= i; j++) {
      double val = 0.5 * (sqD0iData[i] + sqD0iData[j] - sqMat.getVal(i, j));
      T.setVal(i, j, val);
    }
  }
  unsigned int nEigs = (dim < N) ? dim : N;
  RDNumeric::EigenSolvers::powerEigenSolver(nEigs, T, eigVals, eigVecs,
                                            (int)(sumSqD2 * N));

  double *eigData = eigVals.getData();
  bool foundNeg = false;
  unsigned int zeroEigs = 0;
  for (unsigned int i = 0; i < dim; i++) {
    if (eigData[i] > EIGVAL_TOL) {
      eigData[i] = sqrt(eigData[i]);
    } else if (fabs(eigData[i]) < EIGVAL_TOL) {
      eigData[i] = 0.0;
      zeroEigs++;
    } else {
      foundNeg = true;
    }
  }
  if ((foundNeg) && (!randNegEig)) {
    return false;
  }

  if ((zeroEigs >= numZeroFail) && (N > 3)) {
    return false;
  }

  for (unsigned int i = 0; i < N; i++) {
    RDGeom::Point *pt = positions[i];
    for (unsigned int j = 0; j < dim; ++j) {
      if (eigData[j] >= 0.0) {
        (*pt)[j] = eigData[j] * eigVecs.getVal(j, i);
      } else {
        // std::cerr<<"!!! "<<i<<"-"<<j<<": "<<eigData[j]<<std::endl;
        (*pt)[j] = 1.0 - 2.0 * rng();
      }
    }
  }
  return true;
}

bool computeRandomCoords(RDGeom::PointPtrVect &positions, double boxSize,
                         int seed) {
  if (seed > 0) {
    RDKit::getRandomGenerator(seed);
  }
  return computeRandomCoords(positions, boxSize,
                             RDKit::getDoubleRandomSource());
}
bool computeRandomCoords(RDGeom::PointPtrVect &positions, double boxSize,
                         RDKit::double_source_type &rng) {
  CHECK_INVARIANT(boxSize > 0.0, "bad boxSize");

  for (auto pt : positions) {
    for (unsigned int i = 0; i < pt->dimension(); ++i) {
      (*pt)[i] = boxSize * (rng() - 0.5);
    }
  }
  return true;
}

ForceFields::ForceField *constructForceField(
    const BoundsMatrix &mmat, RDGeom::PointPtrVect &positions,
    const VECT_CHIRALSET &csets, double weightChiral, double weightFourthDim,
    std::map<std::pair<int, int>, double> *extraWeights, double basinSizeTol) {
  unsigned int N = mmat.numRows();
  CHECK_INVARIANT(N == positions.size(), "");
  auto *field = new ForceFields::ForceField(positions[0]->dimension());
  for (unsigned int i = 0; i < N; i++) {
    field->positions().push_back(positions[i]);
  }

  for (unsigned int i = 1; i < N; i++) {
    for (unsigned int j = 0; j < i; j++) {
      double w = 1.0;
      double l = mmat.getLowerBound(i, j);
      double u = mmat.getUpperBound(i, j);
      bool includeIt = false;
      if (extraWeights) {
        std::map<std::pair<int, int>, double>::const_iterator mapIt;
        mapIt = extraWeights->find(std::make_pair(i, j));
        if (mapIt != extraWeights->end()) {
          w = mapIt->second;
          includeIt = true;
        }
      }
      if (u - l <= basinSizeTol) {
        includeIt = true;
      }
      if (includeIt) {
        auto *contrib = new DistViolationContrib(field, i, j, u, l, w);
        field->contribs().push_back(ForceFields::ContribPtr(contrib));
      }
    }
  }

  // now add chiral constraints
  if (weightChiral > 1.e-8) {
    for (const auto &cset : csets) {
      auto *contrib =
          new ChiralViolationContrib(field, cset.get(), weightChiral);
      field->contribs().push_back(ForceFields::ContribPtr(contrib));
    }
  }

  // finally the contribution from the fourth dimension if we need to
  if ((field->dimension() == 4) && (weightFourthDim > 1.e-8)) {
    for (unsigned int i = 1; i < N; i++) {
      auto *contrib = new FourthDimContrib(field, i, weightFourthDim);
      field->contribs().push_back(ForceFields::ContribPtr(contrib));
    }
  }
  return field;
}  // constructForceField

ForceFields::ForceField *construct3DForceField(
    const BoundsMatrix &mmat, RDGeom::Point3DPtrVect &positions,
    const std::vector<std::pair<int, int> > &bonds,
    const std::vector<std::vector<int> > &angles,
    const std::vector<std::vector<int> > &expTorsionAtoms,
    const std::vector<std::pair<std::vector<int>, std::vector<double> > > &
        expTorsionAngles,
    const std::vector<std::vector<int> > &improperAtoms,
    const std::vector<int> &atomNums) {
  (void)atomNums;
  unsigned int N = mmat.numRows();
  CHECK_INVARIANT(N == positions.size(), "");
  CHECK_INVARIANT(expTorsionAtoms.size() == expTorsionAngles.size(), "");
  auto *field = new ForceFields::ForceField(positions[0]->dimension());
  for (unsigned int i = 0; i < N; ++i) {
    field->positions().push_back(positions[i]);
  }

  // keep track which atoms are 1,2- or 1,3-restrained
  boost::dynamic_bitset<> atomPairs(N * N);

  // torsion constraints
  for (unsigned int t = 0; t < expTorsionAtoms.size(); ++t) {
    int i = expTorsionAtoms[t][0];
    int j = expTorsionAtoms[t][1];
    int k = expTorsionAtoms[t][2];
    int l = expTorsionAtoms[t][3];
    if (i < j)
      atomPairs[i * N + j] = 1;
    else
      atomPairs[j * N + i] = 1;
    // expTorsionAngles[t][0] = (signs, V's)
    auto *contrib = new ForceFields::CrystalFF::TorsionAngleContribM6(
        field, i, j, k, l, expTorsionAngles[t].second,
        expTorsionAngles[t].first);
    field->contribs().push_back(ForceFields::ContribPtr(contrib));
  }  // torsion constraints

  // improper torsions / out-of-plane bend / inversion
  double oobForceScalingFactor = 10.0;
  for (const auto &improperAtom : improperAtoms) {
    std::vector<int> n(4);
    for (unsigned int i = 0; i < 3; ++i) {
      n[1] = 1;
      switch (i) {
        case 0:
          n[0] = 0;
          n[2] = 2;
          n[3] = 3;
          break;

        case 1:
          n[0] = 0;
          n[2] = 3;
          n[3] = 2;
          break;

        case 2:
          n[0] = 2;
          n[2] = 3;
          n[3] = 0;
          break;
      }
      auto *contrib = new ForceFields::UFF::InversionContrib(
          field, improperAtom[n[0]], improperAtom[n[1]], improperAtom[n[2]],
          improperAtom[n[3]], improperAtom[4], static_cast<bool>(improperAtom[5]),
          oobForceScalingFactor);
      field->contribs().push_back(ForceFields::ContribPtr(contrib));
    }
  }

  double fdist = 100.0;  // force constant
  // 1,2 distance constraints
  std::vector<std::pair<int, int> >::const_iterator bi;
  for (bi = bonds.begin(); bi != bonds.end(); ++bi) {
    unsigned int i = bi->first;
    unsigned int j = bi->second;
    if (i < j)
      atomPairs[i * N + j] = 1;
    else
      atomPairs[j * N + i] = 1;
    double d = ((*positions[i]) - (*positions[j])).length();
    double l = d - 0.01;
    double u = d + 0.01;
    auto *contrib = new ForceFields::UFF::DistanceConstraintContrib(
        field, i, j, l, u, fdist);
    field->contribs().push_back(ForceFields::ContribPtr(contrib));
  }

  // 1,3 distance constraints
  for (const auto &angle : angles) {
    unsigned int i = angle[0];
    unsigned int j = angle[1];
    unsigned int k = angle[2];
    if (i < j)
      atomPairs[i * N + j] = 1;
    else
      atomPairs[j * N + i] = 1;
    // check for triple bonds
    if (angle[3]) {
      auto *contrib = new ForceFields::UFF::AngleConstraintContrib(
          field, i, j, k, 179.0, 180.0, fdist);
      field->contribs().push_back(ForceFields::ContribPtr(contrib));
    } else {
      double d = ((*positions[i]) - (*positions[k])).length();
      double l = d - 0.01;
      double u = d + 0.01;
      auto *contrib = new ForceFields::UFF::DistanceConstraintContrib(
          field, i, k, l, u, fdist);
      field->contribs().push_back(ForceFields::ContribPtr(contrib));
    }
  }

  // minimum distance for all other atom pairs
  fdist = 10.0;
  for (unsigned int i = 1; i < N; ++i) {
    for (unsigned int j = 0; j < i; ++j) {
      if (!atomPairs[j * N + i]) {
        double l = mmat.getLowerBound(i, j);
        double u = mmat.getUpperBound(i, j);
        auto *contrib = new ForceFields::UFF::DistanceConstraintContrib(
            field, i, j, l, u, fdist);
        field->contribs().push_back(ForceFields::ContribPtr(contrib));
      }
    }
  }

  return field;
}  // construct3DForceField

ForceFields::ForceField *constructPlain3DForceField(
    const BoundsMatrix &mmat, RDGeom::Point3DPtrVect &positions,
    const std::vector<std::pair<int, int> > &bonds,
    const std::vector<std::vector<int> > &angles,
    const std::vector<std::vector<int> > &expTorsionAtoms,
    const std::vector<std::pair<std::vector<int>, std::vector<double> > > &
        expTorsionAngles,
    const std::vector<int> &atomNums) {
  (void)atomNums;
  unsigned int N = mmat.numRows();
  CHECK_INVARIANT(N == positions.size(), "");
  CHECK_INVARIANT(expTorsionAtoms.size() == expTorsionAngles.size(), "");
  auto *field = new ForceFields::ForceField(positions[0]->dimension());
  for (unsigned int i = 0; i < N; ++i) {
    field->positions().push_back(positions[i]);
  }

  // keep track which atoms are 1,2- or 1,3-restrained
  boost::dynamic_bitset<> atomPairs(N * N);

  // torsion constraints
  for (unsigned int t = 0; t < expTorsionAtoms.size(); ++t) {
    int i = expTorsionAtoms[t][0];
    int j = expTorsionAtoms[t][1];
    int k = expTorsionAtoms[t][2];
    int l = expTorsionAtoms[t][3];
    if (i < j)
      atomPairs[i * N + j] = 1;
    else
      atomPairs[j * N + i] = 1;
    // expTorsionAngles[t][0] = (signs, V's)
    auto *contrib = new ForceFields::CrystalFF::TorsionAngleContribM6(
        field, i, j, k, l, expTorsionAngles[t].second,
        expTorsionAngles[t].first);
    field->contribs().push_back(ForceFields::ContribPtr(contrib));
  }  // torsion constraints

  double fdist = 100.0;  // force constant
  // 1,2 distance constraints
  std::vector<std::pair<int, int> >::const_iterator bi;
  for (bi = bonds.begin(); bi != bonds.end(); ++bi) {
    unsigned int i = bi->first;
    unsigned int j = bi->second;
    if (i < j)
      atomPairs[i * N + j] = 1;
    else
      atomPairs[j * N + i] = 1;
    double d = ((*positions[i]) - (*positions[j])).length();
    double l = d - 0.01;
    double u = d + 0.01;
    auto *contrib = new ForceFields::UFF::DistanceConstraintContrib(
        field, i, j, l, u, fdist);
    field->contribs().push_back(ForceFields::ContribPtr(contrib));
  }

  // 1,3 distance constraints
  for (unsigned int a = 1; a < angles.size(); ++a) {
    unsigned int i = angles[a][0];
    unsigned int j = angles[a][2];
    if (i < j)
      atomPairs[i * N + j] = 1;
    else
      atomPairs[j * N + i] = 1;
    double d = ((*positions[i]) - (*positions[j])).length();
    double l = d - 0.01;
    double u = d + 0.01;
    auto *contrib = new ForceFields::UFF::DistanceConstraintContrib(
        field, i, j, l, u, fdist);
    field->contribs().push_back(ForceFields::ContribPtr(contrib));
  }

  // minimum distance for all other atom pairs
  fdist = 10.0;
  for (unsigned int i = 1; i < N; ++i) {
    for (unsigned int j = 0; j < i; ++j) {
      if (!atomPairs[j * N + i]) {
        double l = mmat.getLowerBound(i, j);
        double u = mmat.getUpperBound(i, j);
        auto *contrib = new ForceFields::UFF::DistanceConstraintContrib(
            field, i, j, l, u, fdist);
        field->contribs().push_back(ForceFields::ContribPtr(contrib));
      }
    }
  }

  return field;
}  // constructPlain3DForceField

ForceFields::ForceField *construct3DImproperForceField(
    const BoundsMatrix &mmat, RDGeom::Point3DPtrVect &positions,
    const std::vector<std::vector<int> > &improperAtoms,
    const std::vector<int> &atomNums) {
  (void)atomNums;
  unsigned int N = mmat.numRows();
  CHECK_INVARIANT(N == positions.size(), "");
  auto *field = new ForceFields::ForceField(positions[0]->dimension());
  for (unsigned int i = 0; i < N; ++i) {
    field->positions().push_back(positions[i]);
  }

  // improper torsions / out-of-plane bend / inversion
  double oobForceScalingFactor = 10.0;
  for (const auto &improperAtom : improperAtoms) {
    std::vector<int> n(4);
    for (unsigned int i = 0; i < 3; ++i) {
      n[1] = 1;
      switch (i) {
        case 0:
          n[0] = 0;
          n[2] = 2;
          n[3] = 3;
          break;

        case 1:
          n[0] = 0;
          n[2] = 3;
          n[3] = 2;
          break;

        case 2:
          n[0] = 2;
          n[2] = 3;
          n[3] = 0;
          break;
      }
      auto *contrib = new ForceFields::UFF::InversionContrib(
          field, improperAtom[n[0]], improperAtom[n[1]], improperAtom[n[2]],
          improperAtom[n[3]], improperAtom[4], static_cast<bool>(improperAtom[5]),
          oobForceScalingFactor);
      field->contribs().push_back(ForceFields::ContribPtr(contrib));
    }
  }

  return field;

} // construct3DImproperForceField
}