1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "AngleBend.h"
#include "BondStretch.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
namespace ForceFields {
namespace MMFF {
namespace Utils {
double calcAngleRestValue(const MMFFAngle *mmffAngleParams) {
PRECONDITION(mmffAngleParams, "angle parameters not found");
return mmffAngleParams->theta0;
}
double calcCosTheta(RDGeom::Point3D p1, RDGeom::Point3D p2, RDGeom::Point3D p3,
double dist1, double dist2) {
RDGeom::Point3D p12 = p1 - p2;
RDGeom::Point3D p32 = p3 - p2;
double cosTheta = p12.dotProduct(p32) / (dist1 * dist2);
clipToOne(cosTheta);
return cosTheta;
}
double calcAngleForceConstant(const MMFFAngle *mmffAngleParams) {
PRECONDITION(mmffAngleParams, "angle parameters not found");
return mmffAngleParams->ka;
}
double calcAngleBendEnergy(const double theta0, const double ka, bool isLinear,
const double cosTheta) {
double angle = RAD2DEG * acos(cosTheta) - theta0;
double const cb = -0.006981317;
double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
double res = 0.0;
if (isLinear) {
res = MDYNE_A_TO_KCAL_MOL * ka * (1.0 + cosTheta);
} else {
res = 0.5 * c2 * ka * angle * angle * (1.0 + cb * angle);
}
return res;
}
void calcAngleBendGrad(RDGeom::Point3D *r, double *dist, double **g,
double &dE_dTheta, double &cosTheta, double &sinTheta) {
// -------
// dTheta/dx is trickier:
double dCos_dS[6] = {1.0 / dist[0] * (r[1].x - cosTheta * r[0].x),
1.0 / dist[0] * (r[1].y - cosTheta * r[0].y),
1.0 / dist[0] * (r[1].z - cosTheta * r[0].z),
1.0 / dist[1] * (r[0].x - cosTheta * r[1].x),
1.0 / dist[1] * (r[0].y - cosTheta * r[1].y),
1.0 / dist[1] * (r[0].z - cosTheta * r[1].z)};
g[0][0] += dE_dTheta * dCos_dS[0] / (-sinTheta);
g[0][1] += dE_dTheta * dCos_dS[1] / (-sinTheta);
g[0][2] += dE_dTheta * dCos_dS[2] / (-sinTheta);
g[1][0] += dE_dTheta * (-dCos_dS[0] - dCos_dS[3]) / (-sinTheta);
g[1][1] += dE_dTheta * (-dCos_dS[1] - dCos_dS[4]) / (-sinTheta);
g[1][2] += dE_dTheta * (-dCos_dS[2] - dCos_dS[5]) / (-sinTheta);
g[2][0] += dE_dTheta * dCos_dS[3] / (-sinTheta);
g[2][1] += dE_dTheta * dCos_dS[4] / (-sinTheta);
g[2][2] += dE_dTheta * dCos_dS[5] / (-sinTheta);
}
} // end of namespace Utils
AngleBendContrib::AngleBendContrib(ForceField *owner, unsigned int idx1,
unsigned int idx2, unsigned int idx3,
const MMFFAngle *mmffAngleParams,
const MMFFProp *mmffPropParamsCentralAtom) {
PRECONDITION(owner, "bad owner");
PRECONDITION(((idx1 != idx2) && (idx2 != idx3) && (idx1 != idx3)),
"degenerate points");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_isLinear = (mmffPropParamsCentralAtom->linh ? true : false);
d_theta0 = mmffAngleParams->theta0;
d_ka = mmffAngleParams->ka;
}
double AngleBendContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
double dist1 = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
double dist2 = dp_forceField->distance(d_at2Idx, d_at3Idx, pos);
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
return Utils::calcAngleBendEnergy(
d_theta0, d_ka, d_isLinear,
Utils::calcCosTheta(p1, p2, p3, dist1, dist2));
}
void AngleBendContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
double dist[2] = {dp_forceField->distance(d_at1Idx, d_at2Idx, pos),
dp_forceField->distance(d_at2Idx, d_at3Idx, pos)};
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
double *g[3] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
&(grad[3 * d_at3Idx])};
RDGeom::Point3D r[2] = {(p1 - p2) / dist[0], (p3 - p2) / dist[1]};
double cosTheta = r[0].dotProduct(r[1]);
clipToOne(cosTheta);
double sinThetaSq = 1.0 - cosTheta * cosTheta;
double sinTheta =
std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
// use the chain rule:
// dE/dx = dE/dTheta * dTheta/dx
// dE/dTheta is independent of cartesians:
double angleTerm = RAD2DEG * acos(cosTheta) - d_theta0;
double const cb = -0.006981317;
double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
double dE_dTheta = (d_isLinear ? -MDYNE_A_TO_KCAL_MOL * d_ka * sinTheta
: RAD2DEG * c2 * d_ka * angleTerm *
(1.0 + 1.5 * cb * angleTerm));
Utils::calcAngleBendGrad(r, dist, g, dE_dTheta, cosTheta, sinTheta);
}
}
}
|