1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2008 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "Nonbonded.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
#include <GraphMol/ForceFieldHelpers/MMFF/AtomTyper.h>
namespace ForceFields {
namespace MMFF {
namespace Utils {
double calcUnscaledVdWMinimum(MMFFVdWCollection *mmffVdW,
const MMFFVdW *mmffVdWParamsIAtom,
const MMFFVdW *mmffVdWParamsJAtom) {
double gamma_ij = (mmffVdWParamsIAtom->R_star - mmffVdWParamsJAtom->R_star) /
(mmffVdWParamsIAtom->R_star + mmffVdWParamsJAtom->R_star);
return (0.5 * (mmffVdWParamsIAtom->R_star + mmffVdWParamsJAtom->R_star) *
(1.0 +
(((mmffVdWParamsIAtom->DA == 'D') || (mmffVdWParamsJAtom->DA == 'D'))
? 0.0
: mmffVdW->B *
(1.0 - exp(-(mmffVdW->Beta) * gamma_ij * gamma_ij)))));
}
double calcUnscaledVdWWellDepth(double R_star_ij,
const MMFFVdW *mmffVdWParamsIAtom,
const MMFFVdW *mmffVdWParamsJAtom) {
double R_star_ij2 = R_star_ij * R_star_ij;
double const c4 = 181.16;
return (c4 * mmffVdWParamsIAtom->G_i * mmffVdWParamsJAtom->G_i *
mmffVdWParamsIAtom->alpha_i * mmffVdWParamsJAtom->alpha_i /
((sqrt(mmffVdWParamsIAtom->alpha_i / mmffVdWParamsIAtom->N_i) +
sqrt(mmffVdWParamsJAtom->alpha_i / mmffVdWParamsJAtom->N_i)) *
R_star_ij2 * R_star_ij2 * R_star_ij2));
}
double calcVdWEnergy(const double dist, const double R_star_ij,
const double wellDepth) {
double const vdw1 = 1.07;
double const vdw1m1 = vdw1 - 1.0;
double const vdw2 = 1.12;
double const vdw2m1 = vdw2 - 1.0;
double dist2 = dist * dist;
double dist7 = dist2 * dist2 * dist2 * dist;
double aTerm = vdw1 * R_star_ij / (dist + vdw1m1 * R_star_ij);
double aTerm2 = aTerm * aTerm;
double aTerm7 = aTerm2 * aTerm2 * aTerm2 * aTerm;
double R_star_ij2 = R_star_ij * R_star_ij;
double R_star_ij7 = R_star_ij2 * R_star_ij2 * R_star_ij2 * R_star_ij;
double bTerm = vdw2 * R_star_ij7 / (dist7 + vdw2m1 * R_star_ij7) - 2.0;
double res = wellDepth * aTerm7 * bTerm;
return res;
}
void scaleVdWParams(double &R_star_ij, double &wellDepth,
MMFFVdWCollection *mmffVdW,
const MMFFVdW *mmffVdWParamsIAtom,
const MMFFVdW *mmffVdWParamsJAtom) {
if (((mmffVdWParamsIAtom->DA == 'D') && (mmffVdWParamsJAtom->DA == 'A')) ||
((mmffVdWParamsIAtom->DA == 'A') && (mmffVdWParamsJAtom->DA == 'D'))) {
R_star_ij *= mmffVdW->DARAD;
wellDepth *= mmffVdW->DAEPS;
}
}
double calcEleEnergy(unsigned int idx1, unsigned int idx2, double dist,
double chargeTerm, boost::uint8_t dielModel, bool is1_4) {
RDUNUSED_PARAM(idx1);
RDUNUSED_PARAM(idx2);
double corr_dist = dist + 0.05;
double const diel = 332.0716;
double const sc1_4 = 0.75;
if (dielModel == RDKit::MMFF::DISTANCE) {
corr_dist *= corr_dist;
}
return (diel * chargeTerm / corr_dist * (is1_4 ? sc1_4 : 1.0));
}
} // end of namespace utils
VdWContrib::VdWContrib(ForceField *owner, unsigned int idx1, unsigned int idx2,
const MMFFVdWRijstarEps *mmffVdWConstants) {
PRECONDITION(owner, "bad owner");
PRECONDITION(mmffVdWConstants, "bad MMFFVdW parameters");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_R_ij_star = mmffVdWConstants->R_ij_star;
d_wellDepth = mmffVdWConstants->epsilon;
}
double VdWContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
double dist = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
return Utils::calcVdWEnergy(dist, d_R_ij_star, d_wellDepth);
}
void VdWContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
double const vdw1 = 1.07;
double const vdw1m1 = vdw1 - 1.0;
double const vdw2 = 1.12;
double const vdw2m1 = vdw2 - 1.0;
double const vdw2t7 = vdw2 * 7.0;
double dist = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
double *at1Coords = &(pos[3 * d_at1Idx]);
double *at2Coords = &(pos[3 * d_at2Idx]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double q = dist / d_R_ij_star;
double q2 = q * q;
double q6 = q2 * q2 * q2;
double q7 = q6 * q;
double q7pvdw2m1 = q7 + vdw2m1;
double t = vdw1 / (q + vdw1 - 1.0);
double t2 = t * t;
double t7 = t2 * t2 * t2 * t;
double dE_dr = d_wellDepth / d_R_ij_star * t7 *
(-vdw2t7 * q6 / (q7pvdw2m1 * q7pvdw2m1) +
((-vdw2t7 / q7pvdw2m1 + 14.0) / (q + vdw1m1)));
for (unsigned int i = 0; i < 3; ++i) {
double dGrad;
dGrad = ((dist > 0.0) ? (dE_dr * (at1Coords[i] - at2Coords[i]) / dist)
: d_R_ij_star * 0.01);
g1[i] += dGrad;
g2[i] -= dGrad;
}
}
EleContrib::EleContrib(ForceField *owner, unsigned int idx1, unsigned int idx2,
double chargeTerm, boost::uint8_t dielModel,
bool is1_4) {
PRECONDITION(owner, "bad owner");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_chargeTerm = chargeTerm;
d_dielModel = dielModel;
d_is1_4 = is1_4;
}
double EleContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
return Utils::calcEleEnergy(d_at1Idx, d_at2Idx,
dp_forceField->distance(d_at1Idx, d_at2Idx, pos),
d_chargeTerm, d_dielModel, d_is1_4);
}
void EleContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
double dist = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
double *at1Coords = &(pos[3 * d_at1Idx]);
double *at2Coords = &(pos[3 * d_at2Idx]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double corr_dist = dist + 0.05;
corr_dist *= ((d_dielModel == RDKit::MMFF::DISTANCE) ? corr_dist * corr_dist
: corr_dist);
double dE_dr = -332.0716 * (double)(d_dielModel)*d_chargeTerm / corr_dist *
(d_is1_4 ? 0.75 : 1.0);
for (unsigned int i = 0; i < 3; ++i) {
double dGrad;
dGrad =
((dist > 0.0) ? (dE_dr * (at1Coords[i] - at2Coords[i]) / dist) : 0.02);
g1[i] += dGrad;
g2[i] -= dGrad;
}
}
}
}
|