1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "OopBend.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
namespace ForceFields {
namespace MMFF {
namespace Utils {
double calcOopChi(const RDGeom::Point3D &iPoint, const RDGeom::Point3D &jPoint,
const RDGeom::Point3D &kPoint,
const RDGeom::Point3D &lPoint) {
RDGeom::Point3D rJI = iPoint - jPoint;
RDGeom::Point3D rJK = kPoint - jPoint;
RDGeom::Point3D rJL = lPoint - jPoint;
rJI /= rJI.length();
rJK /= rJK.length();
rJL /= rJL.length();
RDGeom::Point3D n = rJI.crossProduct(rJK);
n /= n.length();
double sinChi = n.dotProduct(rJL);
clipToOne(sinChi);
return RAD2DEG * asin(sinChi);
}
double calcOopBendForceConstant(const MMFFOop *mmffOopParams) {
PRECONDITION(mmffOopParams, "no OOP parameters");
return mmffOopParams->koop;
}
double calcOopBendEnergy(const double chi, const double koop) {
double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
return (0.5 * c2 * koop * chi * chi);
}
} // end of namespace Utils
OopBendContrib::OopBendContrib(ForceField *owner, unsigned int idx1,
unsigned int idx2, unsigned int idx3,
unsigned int idx4,
const MMFFOop *mmffOopParams) {
PRECONDITION(owner, "bad owner");
PRECONDITION(mmffOopParams, "no OOP parameters");
PRECONDITION((idx1 != idx2) && (idx1 != idx3) && (idx1 != idx4) &&
(idx2 != idx3) && (idx2 != idx4) && (idx3 != idx4),
"degenerate points");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
URANGE_CHECK(idx4, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_at4Idx = idx4;
d_koop = mmffOopParams->koop;
}
double OopBendContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
return Utils::calcOopBendEnergy(Utils::calcOopChi(p1, p2, p3, p4), d_koop);
}
void OopBendContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
RDGeom::Point3D iPoint(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D jPoint(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D kPoint(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D lPoint(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double *g3 = &(grad[3 * d_at3Idx]);
double *g4 = &(grad[3 * d_at4Idx]);
RDGeom::Point3D rJI = iPoint - jPoint;
RDGeom::Point3D rJK = kPoint - jPoint;
RDGeom::Point3D rJL = lPoint - jPoint;
double dJI = rJI.length();
double dJK = rJK.length();
double dJL = rJL.length();
if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
return;
}
rJI /= dJI;
rJK /= dJK;
rJL /= dJL;
RDGeom::Point3D n = (-rJI).crossProduct(rJK);
n /= n.length();
double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
double sinChi = rJL.dotProduct(n);
clipToOne(sinChi);
double cosChiSq = 1.0 - sinChi * sinChi;
double cosChi = std::max(((cosChiSq > 0.0) ? sqrt(cosChiSq) : 0.0), 1.0e-8);
double chi = RAD2DEG * asin(sinChi);
double cosTheta = rJI.dotProduct(rJK);
clipToOne(cosTheta);
double sinThetaSq = std::max(1.0 - cosTheta * cosTheta, 1.0e-8);
double sinTheta =
std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
double dE_dChi = RAD2DEG * c2 * d_koop * chi;
RDGeom::Point3D t1 = rJL.crossProduct(rJK);
RDGeom::Point3D t2 = rJI.crossProduct(rJL);
RDGeom::Point3D t3 = rJK.crossProduct(rJI);
double term1 = cosChi * sinTheta;
double term2 = sinChi / (cosChi * sinThetaSq);
double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
(t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
(t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
(t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
(t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
double tg4[3] = {(t3.x / term1 - rJL.x * sinChi / cosChi) / dJL,
(t3.y / term1 - rJL.y * sinChi / cosChi) / dJL,
(t3.z / term1 - rJL.z * sinChi / cosChi) / dJL};
for (unsigned int i = 0; i < 3; ++i) {
g1[i] += dE_dChi * tg1[i];
g2[i] += -dE_dChi * (tg1[i] + tg3[i] + tg4[i]);
g3[i] += dE_dChi * tg3[i];
g4[i] += dE_dChi * tg4[i];
}
}
}
}
|