1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "StretchBend.h"
#include "AngleBend.h"
#include "BondStretch.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
namespace ForceFields {
namespace MMFF {
namespace Utils {
std::pair<double, double> calcStbnForceConstants(
const MMFFStbn *mmffStbnParams) {
PRECONDITION(mmffStbnParams, "stretch-bend parameters not found");
return std::make_pair(mmffStbnParams->kbaIJK, mmffStbnParams->kbaKJI);
}
std::pair<double, double> calcStretchBendEnergy(
const double deltaDist1, const double deltaDist2, const double deltaTheta,
const std::pair<double, double> forceConstants) {
double factor = MDYNE_A_TO_KCAL_MOL * DEG2RAD * deltaTheta;
return std::make_pair(factor * forceConstants.first * deltaDist1,
factor * forceConstants.second * deltaDist2);
}
} // end of namespace Utils
StretchBendContrib::StretchBendContrib(
ForceField *owner, const unsigned int idx1, const unsigned int idx2,
const unsigned int idx3, const MMFFStbn *mmffStbnParams,
const MMFFAngle *mmffAngleParams, const MMFFBond *mmffBondParams1,
const MMFFBond *mmffBondParams2) {
PRECONDITION(owner, "bad owner");
PRECONDITION(((idx1 != idx2) && (idx2 != idx3) && (idx1 != idx3)),
"degenerate points");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_restLen1 = Utils::calcBondRestLength(mmffBondParams1);
d_restLen2 = Utils::calcBondRestLength(mmffBondParams2);
d_theta0 = Utils::calcAngleRestValue(mmffAngleParams);
d_forceConstants = Utils::calcStbnForceConstants(mmffStbnParams);
}
double StretchBendContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
double dist1 = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
double dist2 = dp_forceField->distance(d_at2Idx, d_at3Idx, pos);
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
std::pair<double, double> stretchBendEnergies = Utils::calcStretchBendEnergy(
dist1 - d_restLen1, dist2 - d_restLen2,
RAD2DEG * acos(Utils::calcCosTheta(p1, p2, p3, dist1, dist2)) - d_theta0,
d_forceConstants);
return (stretchBendEnergies.first + stretchBendEnergies.second);
}
void StretchBendContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
double dist1 = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
double dist2 = dp_forceField->distance(d_at2Idx, d_at3Idx, pos);
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double *g3 = &(grad[3 * d_at3Idx]);
RDGeom::Point3D p12 = (p1 - p2) / dist1;
RDGeom::Point3D p32 = (p3 - p2) / dist2;
double const c5 = MDYNE_A_TO_KCAL_MOL * DEG2RAD;
double cosTheta = p12.dotProduct(p32);
clipToOne(cosTheta);
double sinThetaSq = 1.0 - cosTheta * cosTheta;
double sinTheta =
std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
double angleTerm = RAD2DEG * acos(cosTheta) - d_theta0;
double distTerm = RAD2DEG * (d_forceConstants.first * (dist1 - d_restLen1) +
d_forceConstants.second * (dist2 - d_restLen2));
double dCos_dS1 = 1.0 / dist1 * (p32.x - cosTheta * p12.x);
double dCos_dS2 = 1.0 / dist1 * (p32.y - cosTheta * p12.y);
double dCos_dS3 = 1.0 / dist1 * (p32.z - cosTheta * p12.z);
double dCos_dS4 = 1.0 / dist2 * (p12.x - cosTheta * p32.x);
double dCos_dS5 = 1.0 / dist2 * (p12.y - cosTheta * p32.y);
double dCos_dS6 = 1.0 / dist2 * (p12.z - cosTheta * p32.z);
g1[0] += c5 * (p12.x * d_forceConstants.first * angleTerm +
dCos_dS1 / (-sinTheta) * distTerm);
g1[1] += c5 * (p12.y * d_forceConstants.first * angleTerm +
dCos_dS2 / (-sinTheta) * distTerm);
g1[2] += c5 * (p12.z * d_forceConstants.first * angleTerm +
dCos_dS3 / (-sinTheta) * distTerm);
g2[0] +=
c5 *
((-p12.x * d_forceConstants.first - p32.x * d_forceConstants.second) *
angleTerm +
(-dCos_dS1 - dCos_dS4) / (-sinTheta) * distTerm);
g2[1] +=
c5 *
((-p12.y * d_forceConstants.first - p32.y * d_forceConstants.second) *
angleTerm +
(-dCos_dS2 - dCos_dS5) / (-sinTheta) * distTerm);
g2[2] +=
c5 *
((-p12.z * d_forceConstants.first - p32.z * d_forceConstants.second) *
angleTerm +
(-dCos_dS3 - dCos_dS6) / (-sinTheta) * distTerm);
g3[0] += c5 * (p32.x * d_forceConstants.second * angleTerm +
dCos_dS4 / (-sinTheta) * distTerm);
g3[1] += c5 * (p32.y * d_forceConstants.second * angleTerm +
dCos_dS5 / (-sinTheta) * distTerm);
g3[2] += c5 * (p32.z * d_forceConstants.second * angleTerm +
dCos_dS6 / (-sinTheta) * distTerm);
}
}
}
|