1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "TorsionAngle.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
namespace ForceFields {
namespace MMFF {
namespace Utils {
double calcTorsionCosPhi(const RDGeom::Point3D &iPoint,
const RDGeom::Point3D &jPoint,
const RDGeom::Point3D &kPoint,
const RDGeom::Point3D &lPoint) {
RDGeom::Point3D r1 = iPoint - jPoint;
RDGeom::Point3D r2 = kPoint - jPoint;
RDGeom::Point3D r3 = jPoint - kPoint;
RDGeom::Point3D r4 = lPoint - kPoint;
RDGeom::Point3D t1 = r1.crossProduct(r2);
RDGeom::Point3D t2 = r3.crossProduct(r4);
double cosPhi = t1.dotProduct(t2) / (t1.length() * t2.length());
clipToOne(cosPhi);
return cosPhi;
}
boost::tuple<double, double, double> calcTorsionForceConstant(
const MMFFTor *mmffTorParams) {
return boost::make_tuple(mmffTorParams->V1, mmffTorParams->V2,
mmffTorParams->V3);
}
double calcTorsionEnergy(const double V1, const double V2, const double V3,
const double cosPhi) {
double cos2Phi = 2.0 * cosPhi * cosPhi - 1.0;
double cos3Phi = cosPhi * (2.0 * cos2Phi - 1.0);
return (0.5 *
(V1 * (1.0 + cosPhi) + V2 * (1.0 - cos2Phi) + V3 * (1.0 + cos3Phi)));
}
void calcTorsionGrad(RDGeom::Point3D *r, RDGeom::Point3D *t, double *d,
double **g, double &sinTerm, double &cosPhi) {
// -------
// dTheta/dx is trickier:
double dCos_dT[6] = {1.0 / d[0] * (t[1].x - cosPhi * t[0].x),
1.0 / d[0] * (t[1].y - cosPhi * t[0].y),
1.0 / d[0] * (t[1].z - cosPhi * t[0].z),
1.0 / d[1] * (t[0].x - cosPhi * t[1].x),
1.0 / d[1] * (t[0].y - cosPhi * t[1].y),
1.0 / d[1] * (t[0].z - cosPhi * t[1].z)};
g[0][0] += sinTerm * (dCos_dT[2] * r[1].y - dCos_dT[1] * r[1].z);
g[0][1] += sinTerm * (dCos_dT[0] * r[1].z - dCos_dT[2] * r[1].x);
g[0][2] += sinTerm * (dCos_dT[1] * r[1].x - dCos_dT[0] * r[1].y);
g[1][0] += sinTerm *
(dCos_dT[1] * (r[1].z - r[0].z) + dCos_dT[2] * (r[0].y - r[1].y) +
dCos_dT[4] * (-r[3].z) + dCos_dT[5] * (r[3].y));
g[1][1] += sinTerm *
(dCos_dT[0] * (r[0].z - r[1].z) + dCos_dT[2] * (r[1].x - r[0].x) +
dCos_dT[3] * (r[3].z) + dCos_dT[5] * (-r[3].x));
g[1][2] += sinTerm *
(dCos_dT[0] * (r[1].y - r[0].y) + dCos_dT[1] * (r[0].x - r[1].x) +
dCos_dT[3] * (-r[3].y) + dCos_dT[4] * (r[3].x));
g[2][0] += sinTerm *
(dCos_dT[1] * (r[0].z) + dCos_dT[2] * (-r[0].y) +
dCos_dT[4] * (r[3].z - r[2].z) + dCos_dT[5] * (r[2].y - r[3].y));
g[2][1] += sinTerm *
(dCos_dT[0] * (-r[0].z) + dCos_dT[2] * (r[0].x) +
dCos_dT[3] * (r[2].z - r[3].z) + dCos_dT[5] * (r[3].x - r[2].x));
g[2][2] += sinTerm *
(dCos_dT[0] * (r[0].y) + dCos_dT[1] * (-r[0].x) +
dCos_dT[3] * (r[3].y - r[2].y) + dCos_dT[4] * (r[2].x - r[3].x));
g[3][0] += sinTerm * (dCos_dT[4] * r[2].z - dCos_dT[5] * r[2].y);
g[3][1] += sinTerm * (dCos_dT[5] * r[2].x - dCos_dT[3] * r[2].z);
g[3][2] += sinTerm * (dCos_dT[3] * r[2].y - dCos_dT[4] * r[2].x);
}
}
TorsionAngleContrib::TorsionAngleContrib(ForceField *owner, unsigned int idx1,
unsigned int idx2, unsigned int idx3,
unsigned int idx4,
const MMFFTor *mmffTorParams) {
PRECONDITION(owner, "bad owner");
PRECONDITION((idx1 != idx2) && (idx1 != idx3) && (idx1 != idx4) &&
(idx2 != idx3) && (idx2 != idx4) && (idx3 != idx4),
"degenerate points");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
URANGE_CHECK(idx4, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_at4Idx = idx4;
d_V1 = mmffTorParams->V1;
d_V2 = mmffTorParams->V2;
d_V3 = mmffTorParams->V3;
}
double TorsionAngleContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
RDGeom::Point3D iPoint(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D jPoint(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D kPoint(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D lPoint(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
return Utils::calcTorsionEnergy(
d_V1, d_V2, d_V3,
Utils::calcTorsionCosPhi(iPoint, jPoint, kPoint, lPoint));
}
void TorsionAngleContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
RDGeom::Point3D iPoint(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D jPoint(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D kPoint(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D lPoint(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double *g[4] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
&(grad[3 * d_at3Idx]), &(grad[3 * d_at4Idx])};
RDGeom::Point3D r[4] = {iPoint - jPoint, kPoint - jPoint, jPoint - kPoint,
lPoint - kPoint};
RDGeom::Point3D t[2] = {r[0].crossProduct(r[1]), r[2].crossProduct(r[3])};
double d[2] = {t[0].length(), t[1].length()};
if (isDoubleZero(d[0]) || isDoubleZero(d[1])) {
return;
}
t[0] /= d[0];
t[1] /= d[1];
double cosPhi = t[0].dotProduct(t[1]);
clipToOne(cosPhi);
double sinPhiSq = 1.0 - cosPhi * cosPhi;
double sinPhi = ((sinPhiSq > 0.0) ? sqrt(sinPhiSq) : 0.0);
double sin2Phi = 2.0 * sinPhi * cosPhi;
double sin3Phi = 3.0 * sinPhi - 4.0 * sinPhi * sinPhiSq;
// dE/dPhi is independent of cartesians:
double dE_dPhi =
0.5 * (-(d_V1)*sinPhi + 2.0 * d_V2 * sin2Phi - 3.0 * d_V3 * sin3Phi);
#if 0
if(dE_dPhi!=dE_dPhi){
std::cout << "\tNaN in Torsion("<<d_at1Idx<<","<<d_at2Idx<<","<<d_at3Idx<<","<<d_at4Idx<<")"<< std::endl;
std::cout << "sin: " << sinPhi << std::endl;
std::cout << "cos: " << cosPhi << std::endl;
}
#endif
// FIX: use a tolerance here
// this is hacky, but it's per the
// recommendation from Niketic and Rasmussen:
double sinTerm =
-dE_dPhi * (isDoubleZero(sinPhi) ? (1.0 / cosPhi) : (1.0 / sinPhi));
Utils::calcTorsionGrad(r, t, d, g, sinTerm, cosPhi);
}
}
}
|