File: AngleBend.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (255 lines) | stat: -rw-r--r-- 8,927 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// $Id$
//
//  Copyright (C) 2004-2013 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "AngleBend.h"
#include "BondStretch.h"
#include "Params.h"
#include <math.h>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>

namespace ForceFields {
namespace UFF {

namespace Utils {
double calcAngleForceConstant(double theta0, double bondOrder12,
                              double bondOrder23, const AtomicParams *at1Params,
                              const AtomicParams *at2Params,
                              const AtomicParams *at3Params) {
  double cosTheta0 = cos(theta0);
  double r12 = calcBondRestLength(bondOrder12, at1Params, at2Params);
  double r23 = calcBondRestLength(bondOrder23, at2Params, at3Params);
  double r13 = sqrt(r12 * r12 + r23 * r23 - 2. * r12 * r23 * cosTheta0);
  double beta = 2. * Params::G / (r12 * r23);

  double preFactor = beta * at1Params->Z1 * at3Params->Z1 / int_pow<5>(r13);
  double rTerm = r12 * r23;
  double innerBit =
      3. * rTerm * (1. - cosTheta0 * cosTheta0) - r13 * r13 * cosTheta0;
  double res = preFactor * rTerm * innerBit;
  return res;
}

void calcAngleBendGrad(RDGeom::Point3D *r, double *dist, double **g,
                       double &dE_dTheta, double &cosTheta, double &sinTheta) {
  // -------
  // dTheta/dx is trickier:
  double dCos_dS[6] = {1.0 / dist[0] * (r[1].x - cosTheta * r[0].x),
                       1.0 / dist[0] * (r[1].y - cosTheta * r[0].y),
                       1.0 / dist[0] * (r[1].z - cosTheta * r[0].z),
                       1.0 / dist[1] * (r[0].x - cosTheta * r[1].x),
                       1.0 / dist[1] * (r[0].y - cosTheta * r[1].y),
                       1.0 / dist[1] * (r[0].z - cosTheta * r[1].z)};

  g[0][0] += dE_dTheta * dCos_dS[0] / (-sinTheta);
  g[0][1] += dE_dTheta * dCos_dS[1] / (-sinTheta);
  g[0][2] += dE_dTheta * dCos_dS[2] / (-sinTheta);

  g[1][0] += dE_dTheta * (-dCos_dS[0] - dCos_dS[3]) / (-sinTheta);
  g[1][1] += dE_dTheta * (-dCos_dS[1] - dCos_dS[4]) / (-sinTheta);
  g[1][2] += dE_dTheta * (-dCos_dS[2] - dCos_dS[5]) / (-sinTheta);

  g[2][0] += dE_dTheta * dCos_dS[3] / (-sinTheta);
  g[2][1] += dE_dTheta * dCos_dS[4] / (-sinTheta);
  g[2][2] += dE_dTheta * dCos_dS[5] / (-sinTheta);
}
}  // end of namespace Utils

AngleBendContrib::AngleBendContrib(ForceField *owner, unsigned int idx1,
                                   unsigned int idx2, unsigned int idx3,
                                   double bondOrder12, double bondOrder23,
                                   const AtomicParams *at1Params,
                                   const AtomicParams *at2Params,
                                   const AtomicParams *at3Params,
                                   unsigned int order) {
  PRECONDITION(owner, "bad owner");
  PRECONDITION(at1Params, "bad params pointer");
  PRECONDITION(at2Params, "bad params pointer");
  PRECONDITION(at3Params, "bad params pointer");
  PRECONDITION((idx1 != idx2 && idx2 != idx3 && idx1 != idx3),
               "degenerate points");
  URANGE_CHECK(idx1, owner->positions().size());
  URANGE_CHECK(idx2, owner->positions().size());
  URANGE_CHECK(idx3, owner->positions().size());
  // the following is a hack to get decent geometries
  // with 3- and 4-membered rings incorporating sp2 atoms
  double theta0 = at2Params->theta0;
  if (order >= 30) {
    switch (order) {
      case 30:
        theta0 = 150.0 / 180.0 * M_PI;
        break;
      case 35:
        theta0 = 60.0 / 180.0 * M_PI;
        break;
      case 40:
        theta0 = 135.0 / 180.0 * M_PI;
        break;
      case 45:
        theta0 = 90.0 / 180.0 * M_PI;
        break;
    }
    order = 0;
  }
  // end of the hack
  dp_forceField = owner;
  d_at1Idx = idx1;
  d_at2Idx = idx2;
  d_at3Idx = idx3;
  d_order = order;
  d_forceConstant = Utils::calcAngleForceConstant(
      theta0, bondOrder12, bondOrder23, at1Params, at2Params, at3Params);
  if (order == 0) {
    double sinTheta0 = sin(theta0);
    double cosTheta0 = cos(theta0);
    d_C2 = 1. / (4. * std::max(sinTheta0 * sinTheta0, 1e-8));
    d_C1 = -4. * d_C2 * cosTheta0;
    d_C0 = d_C2 * (2. * cosTheta0 * cosTheta0 + 1.);
  }
}

double AngleBendContrib::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");

  double dist1 = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
  double dist2 = dp_forceField->distance(d_at2Idx, d_at3Idx, pos);

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p12 = p1 - p2;
  RDGeom::Point3D p32 = p3 - p2;
  double cosTheta = p12.dotProduct(p32) / (dist1 * dist2);
  clipToOne(cosTheta);
  // we need sin^2(theta) to get cos(2*theta), so compute that:
  double sinThetaSq = 1. - cosTheta * cosTheta;

  double angleTerm = getEnergyTerm(cosTheta, sinThetaSq);
  double res = d_forceConstant * angleTerm;

  return res;
}

void AngleBendContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  double dist[2] = {dp_forceField->distance(d_at1Idx, d_at2Idx, pos),
                    dp_forceField->distance(d_at2Idx, d_at3Idx, pos)};

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  double *g[3] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
                  &(grad[3 * d_at3Idx])};
  RDGeom::Point3D r[2] = {(p1 - p2) / dist[0], (p3 - p2) / dist[1]};
  double cosTheta = r[0].dotProduct(r[1]);
  clipToOne(cosTheta);
  double sinThetaSq = 1.0 - cosTheta * cosTheta;
  double sinTheta =
      std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);

  // std::cerr << "GRAD: " << cosTheta << " (" << acos(cosTheta)<< "), ";
  // std::cerr << sinTheta << " (" << asin(sinTheta)<< ")" << std::endl;

  // use the chain rule:
  // dE/dx = dE/dTheta * dTheta/dx

  // dE/dTheta is independent of cartesians:
  double dE_dTheta = getThetaDeriv(cosTheta, sinTheta);

  Utils::calcAngleBendGrad(r, dist, g, dE_dTheta, cosTheta, sinTheta);
}

double AngleBendContrib::getEnergyTerm(double cosTheta,
                                       double sinThetaSq) const {
  PRECONDITION(d_order == 0 || d_order == 1 || d_order == 2 || d_order == 3 ||
                   d_order == 4,
               "bad order");
  // cos(2x) = cos^2(x) - sin^2(x);
  double cos2Theta = cosTheta * cosTheta - sinThetaSq;

  double res = 0.0;
  if (d_order == 0) {
    res = d_C0 + d_C1 * cosTheta + d_C2 * cos2Theta;
  } else {
    switch (d_order) {
      case 1:
        res = -cosTheta;
        break;
      case 2:
        res = cos2Theta;
        break;
      case 3:
        // cos(3x) = cos^3(x) - 3*cos(x)*sin^2(x)
        res = cosTheta * (cosTheta * cosTheta - 3. * sinThetaSq);
        break;
      case 4:
        // cos(4x) = cos^4(x) - 6*cos^2(x)*sin^2(x)+sin^4(x)
        res = int_pow<4>(cosTheta) - 6. * cosTheta * cosTheta * sinThetaSq +
              sinThetaSq * sinThetaSq;
        break;
    }
    res = 1. - res;
    res /= (double)(d_order * d_order);
  }
  return res;
}

double AngleBendContrib::getThetaDeriv(double cosTheta, double sinTheta) const {
  PRECONDITION(d_order == 0 || d_order == 1 || d_order == 2 || d_order == 3 ||
                   d_order == 4,
               "bad order");

  double dE_dTheta = 0.0;
  double sin2Theta = 2. * sinTheta * cosTheta;

  if (d_order == 0) {
    dE_dTheta =
        -1. * d_forceConstant * (d_C1 * sinTheta + 2. * d_C2 * sin2Theta);
  } else {
    // E = k/n^2 [1-cos(n theta)]
    // dE = - k/n^2 * d cos(n theta)

    // these all use:
    // d cos(ax) = -a sin(ax)

    switch (d_order) {
      case 1:
        dE_dTheta = -sinTheta;
        break;
      case 2:
        // sin(2*x) = 2*cos(x)*sin(x)
        dE_dTheta = sin2Theta;
        break;
      case 3:
        // sin(3*x) = 3*sin(x) - 4*sin^3(x)
        dE_dTheta = sinTheta * (3. - 4. * sinTheta * sinTheta);
        break;
      case 4:
        // sin(4*x) = cos(x)*(4*sin(x) - 8*sin^3(x))
        dE_dTheta = cosTheta * sinTheta * (4. - 8. * sinTheta * sinTheta);
        break;
    }
    dE_dTheta *= d_forceConstant / (double)(d_order);
  }
  return dE_dTheta;
}
}
}