1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
// $Id$
//
// Copyright (C) 2004-2013 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "AngleBend.h"
#include "BondStretch.h"
#include "Params.h"
#include <math.h>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
namespace ForceFields {
namespace UFF {
namespace Utils {
double calcAngleForceConstant(double theta0, double bondOrder12,
double bondOrder23, const AtomicParams *at1Params,
const AtomicParams *at2Params,
const AtomicParams *at3Params) {
double cosTheta0 = cos(theta0);
double r12 = calcBondRestLength(bondOrder12, at1Params, at2Params);
double r23 = calcBondRestLength(bondOrder23, at2Params, at3Params);
double r13 = sqrt(r12 * r12 + r23 * r23 - 2. * r12 * r23 * cosTheta0);
double beta = 2. * Params::G / (r12 * r23);
double preFactor = beta * at1Params->Z1 * at3Params->Z1 / int_pow<5>(r13);
double rTerm = r12 * r23;
double innerBit =
3. * rTerm * (1. - cosTheta0 * cosTheta0) - r13 * r13 * cosTheta0;
double res = preFactor * rTerm * innerBit;
return res;
}
void calcAngleBendGrad(RDGeom::Point3D *r, double *dist, double **g,
double &dE_dTheta, double &cosTheta, double &sinTheta) {
// -------
// dTheta/dx is trickier:
double dCos_dS[6] = {1.0 / dist[0] * (r[1].x - cosTheta * r[0].x),
1.0 / dist[0] * (r[1].y - cosTheta * r[0].y),
1.0 / dist[0] * (r[1].z - cosTheta * r[0].z),
1.0 / dist[1] * (r[0].x - cosTheta * r[1].x),
1.0 / dist[1] * (r[0].y - cosTheta * r[1].y),
1.0 / dist[1] * (r[0].z - cosTheta * r[1].z)};
g[0][0] += dE_dTheta * dCos_dS[0] / (-sinTheta);
g[0][1] += dE_dTheta * dCos_dS[1] / (-sinTheta);
g[0][2] += dE_dTheta * dCos_dS[2] / (-sinTheta);
g[1][0] += dE_dTheta * (-dCos_dS[0] - dCos_dS[3]) / (-sinTheta);
g[1][1] += dE_dTheta * (-dCos_dS[1] - dCos_dS[4]) / (-sinTheta);
g[1][2] += dE_dTheta * (-dCos_dS[2] - dCos_dS[5]) / (-sinTheta);
g[2][0] += dE_dTheta * dCos_dS[3] / (-sinTheta);
g[2][1] += dE_dTheta * dCos_dS[4] / (-sinTheta);
g[2][2] += dE_dTheta * dCos_dS[5] / (-sinTheta);
}
} // end of namespace Utils
AngleBendContrib::AngleBendContrib(ForceField *owner, unsigned int idx1,
unsigned int idx2, unsigned int idx3,
double bondOrder12, double bondOrder23,
const AtomicParams *at1Params,
const AtomicParams *at2Params,
const AtomicParams *at3Params,
unsigned int order) {
PRECONDITION(owner, "bad owner");
PRECONDITION(at1Params, "bad params pointer");
PRECONDITION(at2Params, "bad params pointer");
PRECONDITION(at3Params, "bad params pointer");
PRECONDITION((idx1 != idx2 && idx2 != idx3 && idx1 != idx3),
"degenerate points");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
// the following is a hack to get decent geometries
// with 3- and 4-membered rings incorporating sp2 atoms
double theta0 = at2Params->theta0;
if (order >= 30) {
switch (order) {
case 30:
theta0 = 150.0 / 180.0 * M_PI;
break;
case 35:
theta0 = 60.0 / 180.0 * M_PI;
break;
case 40:
theta0 = 135.0 / 180.0 * M_PI;
break;
case 45:
theta0 = 90.0 / 180.0 * M_PI;
break;
}
order = 0;
}
// end of the hack
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_order = order;
d_forceConstant = Utils::calcAngleForceConstant(
theta0, bondOrder12, bondOrder23, at1Params, at2Params, at3Params);
if (order == 0) {
double sinTheta0 = sin(theta0);
double cosTheta0 = cos(theta0);
d_C2 = 1. / (4. * std::max(sinTheta0 * sinTheta0, 1e-8));
d_C1 = -4. * d_C2 * cosTheta0;
d_C0 = d_C2 * (2. * cosTheta0 * cosTheta0 + 1.);
}
}
double AngleBendContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
double dist1 = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
double dist2 = dp_forceField->distance(d_at2Idx, d_at3Idx, pos);
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p12 = p1 - p2;
RDGeom::Point3D p32 = p3 - p2;
double cosTheta = p12.dotProduct(p32) / (dist1 * dist2);
clipToOne(cosTheta);
// we need sin^2(theta) to get cos(2*theta), so compute that:
double sinThetaSq = 1. - cosTheta * cosTheta;
double angleTerm = getEnergyTerm(cosTheta, sinThetaSq);
double res = d_forceConstant * angleTerm;
return res;
}
void AngleBendContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
double dist[2] = {dp_forceField->distance(d_at1Idx, d_at2Idx, pos),
dp_forceField->distance(d_at2Idx, d_at3Idx, pos)};
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
double *g[3] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
&(grad[3 * d_at3Idx])};
RDGeom::Point3D r[2] = {(p1 - p2) / dist[0], (p3 - p2) / dist[1]};
double cosTheta = r[0].dotProduct(r[1]);
clipToOne(cosTheta);
double sinThetaSq = 1.0 - cosTheta * cosTheta;
double sinTheta =
std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
// std::cerr << "GRAD: " << cosTheta << " (" << acos(cosTheta)<< "), ";
// std::cerr << sinTheta << " (" << asin(sinTheta)<< ")" << std::endl;
// use the chain rule:
// dE/dx = dE/dTheta * dTheta/dx
// dE/dTheta is independent of cartesians:
double dE_dTheta = getThetaDeriv(cosTheta, sinTheta);
Utils::calcAngleBendGrad(r, dist, g, dE_dTheta, cosTheta, sinTheta);
}
double AngleBendContrib::getEnergyTerm(double cosTheta,
double sinThetaSq) const {
PRECONDITION(d_order == 0 || d_order == 1 || d_order == 2 || d_order == 3 ||
d_order == 4,
"bad order");
// cos(2x) = cos^2(x) - sin^2(x);
double cos2Theta = cosTheta * cosTheta - sinThetaSq;
double res = 0.0;
if (d_order == 0) {
res = d_C0 + d_C1 * cosTheta + d_C2 * cos2Theta;
} else {
switch (d_order) {
case 1:
res = -cosTheta;
break;
case 2:
res = cos2Theta;
break;
case 3:
// cos(3x) = cos^3(x) - 3*cos(x)*sin^2(x)
res = cosTheta * (cosTheta * cosTheta - 3. * sinThetaSq);
break;
case 4:
// cos(4x) = cos^4(x) - 6*cos^2(x)*sin^2(x)+sin^4(x)
res = int_pow<4>(cosTheta) - 6. * cosTheta * cosTheta * sinThetaSq +
sinThetaSq * sinThetaSq;
break;
}
res = 1. - res;
res /= (double)(d_order * d_order);
}
return res;
}
double AngleBendContrib::getThetaDeriv(double cosTheta, double sinTheta) const {
PRECONDITION(d_order == 0 || d_order == 1 || d_order == 2 || d_order == 3 ||
d_order == 4,
"bad order");
double dE_dTheta = 0.0;
double sin2Theta = 2. * sinTheta * cosTheta;
if (d_order == 0) {
dE_dTheta =
-1. * d_forceConstant * (d_C1 * sinTheta + 2. * d_C2 * sin2Theta);
} else {
// E = k/n^2 [1-cos(n theta)]
// dE = - k/n^2 * d cos(n theta)
// these all use:
// d cos(ax) = -a sin(ax)
switch (d_order) {
case 1:
dE_dTheta = -sinTheta;
break;
case 2:
// sin(2*x) = 2*cos(x)*sin(x)
dE_dTheta = sin2Theta;
break;
case 3:
// sin(3*x) = 3*sin(x) - 4*sin^3(x)
dE_dTheta = sinTheta * (3. - 4. * sinTheta * sinTheta);
break;
case 4:
// sin(4*x) = cos(x)*(4*sin(x) - 8*sin^3(x))
dE_dTheta = cosTheta * sinTheta * (4. - 8. * sinTheta * sinTheta);
break;
}
dE_dTheta *= d_forceConstant / (double)(d_order);
}
return dE_dTheta;
}
}
}
|