File: Inversion.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (204 lines) | stat: -rw-r--r-- 7,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// $Id$
//
//  Copyright (C) 2013 Paolo Tosco
//
//  Copyright (C) 2004-2006 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include "Inversion.h"
#include "Params.h"
#include <math.h>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>

namespace ForceFields {
namespace UFF {
namespace Utils {
double calculateCosY(const RDGeom::Point3D &iPoint,
                     const RDGeom::Point3D &jPoint,
                     const RDGeom::Point3D &kPoint,
                     const RDGeom::Point3D &lPoint) {
  RDGeom::Point3D rJI = iPoint - jPoint;
  RDGeom::Point3D rJK = kPoint - jPoint;
  RDGeom::Point3D rJL = lPoint - jPoint;
  rJI /= rJI.length();
  rJK /= rJK.length();
  rJL /= rJL.length();

  RDGeom::Point3D n = rJI.crossProduct(rJK);
  n /= n.length();

  return n.dotProduct(rJL);
}

boost::tuple<double, double, double, double>
calcInversionCoefficientsAndForceConstant(int at2AtomicNum, bool isCBoundToO) {
  double res = 0.0;
  double C0 = 0.0;
  double C1 = 0.0;
  double C2 = 0.0;
  // if the central atom is sp2 carbon, nitrogen or oxygen
  if ((at2AtomicNum == 6) || (at2AtomicNum == 7) || (at2AtomicNum == 8)) {
    C0 = 1.0;
    C1 = -1.0;
    C2 = 0.0;
    res = (isCBoundToO ? 50.0 : 6.0);
  } else {
    // group 5 elements are not clearly explained in the UFF paper
    // the following code was inspired by MCCCS Towhee's ffuff.F
    double w0 = M_PI / 180.0;
    switch (at2AtomicNum) {
      // if the central atom is phosphorous
      case 15:
        w0 *= 84.4339;
        break;

      // if the central atom is arsenic
      case 33:
        w0 *= 86.9735;
        break;

      // if the central atom is antimonium
      case 51:
        w0 *= 87.7047;
        break;

      // if the central atom is bismuth
      case 83:
        w0 *= 90.0;
        break;
    }
    C2 = 1.0;
    C1 = -4.0 * cos(w0);
    C0 = -(C1 * cos(w0) + C2 * cos(2.0 * w0));
    res = 22.0 / (C0 + C1 + C2);
  }
  res /= 3.0;

  return boost::make_tuple(res, C0, C1, C2);
}
}  // end of namespace Utils

InversionContrib::InversionContrib(ForceField *owner, unsigned int idx1,
                                   unsigned int idx2, unsigned int idx3,
                                   unsigned int idx4, int at2AtomicNum,
                                   bool isCBoundToO, double oobForceScalingFactor) {
  PRECONDITION(owner, "bad owner");
  URANGE_CHECK(idx1, owner->positions().size());
  URANGE_CHECK(idx2, owner->positions().size());
  URANGE_CHECK(idx3, owner->positions().size());
  URANGE_CHECK(idx4, owner->positions().size());

  dp_forceField = owner;
  d_at1Idx = idx1;
  d_at2Idx = idx2;
  d_at3Idx = idx3;
  d_at4Idx = idx4;

  boost::tuple<double, double, double, double> invCoeffForceCon =
      Utils::calcInversionCoefficientsAndForceConstant(at2AtomicNum,
                                                       isCBoundToO);
  d_forceConstant = oobForceScalingFactor * boost::tuples::get<0>(invCoeffForceCon);
  d_C0 = boost::tuples::get<1>(invCoeffForceCon);
  d_C1 = boost::tuples::get<2>(invCoeffForceCon);
  d_C2 = boost::tuples::get<3>(invCoeffForceCon);
}

double InversionContrib::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                     pos[3 * d_at4Idx + 2]);

  double cosY = Utils::calculateCosY(p1, p2, p3, p4);
  double sinYSq = 1.0 - cosY * cosY;
  double sinY = ((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0);
  // cos(2 * W) = 2 * cos(W) * cos(W) - 1 = 2 * sin(W) * sin(W) - 1
  double cos2W = 2.0 * sinY * sinY - 1.0;
  double res = d_forceConstant * (d_C0 + d_C1 * sinY + d_C2 * cos2W);
  // std::cout << d_at1Idx + 1 << "," << d_at2Idx + 1 << "," << d_at3Idx + 1 <<
  // "," << d_at4Idx + 1 << " Inversion: " << res << std::endl;

  return res;
}
void InversionContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                     pos[3 * d_at4Idx + 2]);
  double *g1 = &(grad[3 * d_at1Idx]);
  double *g2 = &(grad[3 * d_at2Idx]);
  double *g3 = &(grad[3 * d_at3Idx]);
  double *g4 = &(grad[3 * d_at4Idx]);

  RDGeom::Point3D rJI = p1 - p2;
  RDGeom::Point3D rJK = p3 - p2;
  RDGeom::Point3D rJL = p4 - p2;
  double dJI = rJI.length();
  double dJK = rJK.length();
  double dJL = rJL.length();
  if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
    return;
  }
  rJI /= dJI;
  rJK /= dJK;
  rJL /= dJL;

  RDGeom::Point3D n = (-rJI).crossProduct(rJK);
  n /= n.length();
  double cosY = n.dotProduct(rJL);
  clipToOne(cosY);
  double sinYSq = 1.0 - cosY * cosY;
  double sinY = std::max(((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0), 1.0e-8);
  double cosTheta = rJI.dotProduct(rJK);
  clipToOne(cosTheta);
  double sinThetaSq = std::max(1.0 - cosTheta * cosTheta, 1.0e-8);
  double sinTheta =
      std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
  // sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
  double dE_dW = -d_forceConstant * (d_C1 * cosY - 4.0 * d_C2 * cosY * sinY);
  RDGeom::Point3D t1 = rJL.crossProduct(rJK);
  RDGeom::Point3D t2 = rJI.crossProduct(rJL);
  RDGeom::Point3D t3 = rJK.crossProduct(rJI);
  double term1 = sinY * sinTheta;
  double term2 = cosY / (sinY * sinThetaSq);
  double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
                   (t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
                   (t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
  double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
                   (t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
                   (t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
  double tg4[3] = {(t3.x / term1 - rJL.x * cosY / sinY) / dJL,
                   (t3.y / term1 - rJL.y * cosY / sinY) / dJL,
                   (t3.z / term1 - rJL.z * cosY / sinY) / dJL};
  for (unsigned int i = 0; i < 3; ++i) {
    g1[i] += dE_dW * tg1[i];
    g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
    g3[i] += dE_dW * tg3[i];
    g4[i] += dE_dW * tg4[i];
  }
}
}
}