1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "Inversion.h"
#include "Params.h"
#include <math.h>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
namespace ForceFields {
namespace UFF {
namespace Utils {
double calculateCosY(const RDGeom::Point3D &iPoint,
const RDGeom::Point3D &jPoint,
const RDGeom::Point3D &kPoint,
const RDGeom::Point3D &lPoint) {
RDGeom::Point3D rJI = iPoint - jPoint;
RDGeom::Point3D rJK = kPoint - jPoint;
RDGeom::Point3D rJL = lPoint - jPoint;
rJI /= rJI.length();
rJK /= rJK.length();
rJL /= rJL.length();
RDGeom::Point3D n = rJI.crossProduct(rJK);
n /= n.length();
return n.dotProduct(rJL);
}
boost::tuple<double, double, double, double>
calcInversionCoefficientsAndForceConstant(int at2AtomicNum, bool isCBoundToO) {
double res = 0.0;
double C0 = 0.0;
double C1 = 0.0;
double C2 = 0.0;
// if the central atom is sp2 carbon, nitrogen or oxygen
if ((at2AtomicNum == 6) || (at2AtomicNum == 7) || (at2AtomicNum == 8)) {
C0 = 1.0;
C1 = -1.0;
C2 = 0.0;
res = (isCBoundToO ? 50.0 : 6.0);
} else {
// group 5 elements are not clearly explained in the UFF paper
// the following code was inspired by MCCCS Towhee's ffuff.F
double w0 = M_PI / 180.0;
switch (at2AtomicNum) {
// if the central atom is phosphorous
case 15:
w0 *= 84.4339;
break;
// if the central atom is arsenic
case 33:
w0 *= 86.9735;
break;
// if the central atom is antimonium
case 51:
w0 *= 87.7047;
break;
// if the central atom is bismuth
case 83:
w0 *= 90.0;
break;
}
C2 = 1.0;
C1 = -4.0 * cos(w0);
C0 = -(C1 * cos(w0) + C2 * cos(2.0 * w0));
res = 22.0 / (C0 + C1 + C2);
}
res /= 3.0;
return boost::make_tuple(res, C0, C1, C2);
}
} // end of namespace Utils
InversionContrib::InversionContrib(ForceField *owner, unsigned int idx1,
unsigned int idx2, unsigned int idx3,
unsigned int idx4, int at2AtomicNum,
bool isCBoundToO, double oobForceScalingFactor) {
PRECONDITION(owner, "bad owner");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
URANGE_CHECK(idx4, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_at4Idx = idx4;
boost::tuple<double, double, double, double> invCoeffForceCon =
Utils::calcInversionCoefficientsAndForceConstant(at2AtomicNum,
isCBoundToO);
d_forceConstant = oobForceScalingFactor * boost::tuples::get<0>(invCoeffForceCon);
d_C0 = boost::tuples::get<1>(invCoeffForceCon);
d_C1 = boost::tuples::get<2>(invCoeffForceCon);
d_C2 = boost::tuples::get<3>(invCoeffForceCon);
}
double InversionContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double cosY = Utils::calculateCosY(p1, p2, p3, p4);
double sinYSq = 1.0 - cosY * cosY;
double sinY = ((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0);
// cos(2 * W) = 2 * cos(W) * cos(W) - 1 = 2 * sin(W) * sin(W) - 1
double cos2W = 2.0 * sinY * sinY - 1.0;
double res = d_forceConstant * (d_C0 + d_C1 * sinY + d_C2 * cos2W);
// std::cout << d_at1Idx + 1 << "," << d_at2Idx + 1 << "," << d_at3Idx + 1 <<
// "," << d_at4Idx + 1 << " Inversion: " << res << std::endl;
return res;
}
void InversionContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double *g3 = &(grad[3 * d_at3Idx]);
double *g4 = &(grad[3 * d_at4Idx]);
RDGeom::Point3D rJI = p1 - p2;
RDGeom::Point3D rJK = p3 - p2;
RDGeom::Point3D rJL = p4 - p2;
double dJI = rJI.length();
double dJK = rJK.length();
double dJL = rJL.length();
if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
return;
}
rJI /= dJI;
rJK /= dJK;
rJL /= dJL;
RDGeom::Point3D n = (-rJI).crossProduct(rJK);
n /= n.length();
double cosY = n.dotProduct(rJL);
clipToOne(cosY);
double sinYSq = 1.0 - cosY * cosY;
double sinY = std::max(((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0), 1.0e-8);
double cosTheta = rJI.dotProduct(rJK);
clipToOne(cosTheta);
double sinThetaSq = std::max(1.0 - cosTheta * cosTheta, 1.0e-8);
double sinTheta =
std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
// sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
double dE_dW = -d_forceConstant * (d_C1 * cosY - 4.0 * d_C2 * cosY * sinY);
RDGeom::Point3D t1 = rJL.crossProduct(rJK);
RDGeom::Point3D t2 = rJI.crossProduct(rJL);
RDGeom::Point3D t3 = rJK.crossProduct(rJI);
double term1 = sinY * sinTheta;
double term2 = cosY / (sinY * sinThetaSq);
double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
(t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
(t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
(t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
(t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
double tg4[3] = {(t3.x / term1 - rJL.x * cosY / sinY) / dJL,
(t3.y / term1 - rJL.y * cosY / sinY) / dJL,
(t3.z / term1 - rJL.z * cosY / sinY) / dJL};
for (unsigned int i = 0; i < 3; ++i) {
g1[i] += dE_dW * tg1[i];
g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
g3[i] += dE_dW * tg3[i];
g4[i] += dE_dW * tg4[i];
}
}
}
}
|