File: TorsionConstraint.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (206 lines) | stat: -rw-r--r-- 7,638 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// $Id$
//
//  Copyright (C) 2013 Paolo Tosco
//
//  Copyright (C) 2004-2006 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "TorsionAngle.h"
#include "TorsionConstraint.h"
#include "Params.h"
#include <cmath>

#include <RDGeneral/BoostStartInclude.h>
#include <boost/math/special_functions/round.hpp>
#include <RDGeneral/BoostEndInclude.h>

#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>

namespace ForceFields {
namespace UFF {
void _pretreatDihedrals(double &minDihedralDeg, double &maxDihedralDeg) {
  if (minDihedralDeg < 0.0) minDihedralDeg += 360.0;
  if (maxDihedralDeg < 0.0) maxDihedralDeg += 360.0;
  minDihedralDeg = fmod(minDihedralDeg, 360.0);
  maxDihedralDeg = fmod(maxDihedralDeg, 360.0);
  if (maxDihedralDeg < minDihedralDeg) maxDihedralDeg += 360.0;
}

TorsionConstraintContrib::TorsionConstraintContrib(
    ForceField *owner, unsigned int idx1, unsigned int idx2, unsigned int idx3,
    unsigned int idx4, double minDihedralDeg, double maxDihedralDeg,
    double forceConst) {
  PRECONDITION(owner, "bad owner");
  URANGE_CHECK(idx1, owner->positions().size());
  URANGE_CHECK(idx2, owner->positions().size());
  URANGE_CHECK(idx3, owner->positions().size());
  URANGE_CHECK(idx4, owner->positions().size());
  PRECONDITION((!(maxDihedralDeg < minDihedralDeg)) &&
                   ((maxDihedralDeg - minDihedralDeg) < 360.0),
               "bad bounds");
  _pretreatDihedrals(minDihedralDeg, maxDihedralDeg);

  dp_forceField = owner;
  d_at1Idx = idx1;
  d_at2Idx = idx2;
  d_at3Idx = idx3;
  d_at4Idx = idx4;
  d_minDihedralDeg = minDihedralDeg;
  d_maxDihedralDeg = maxDihedralDeg;
  d_forceConstant = forceConst;
}

TorsionConstraintContrib::TorsionConstraintContrib(
    ForceField *owner, unsigned int idx1, unsigned int idx2, unsigned int idx3,
    unsigned int idx4, bool relative, double minDihedralDeg,
    double maxDihedralDeg, double forceConst) {
  PRECONDITION(owner, "bad owner");
  const RDGeom::PointPtrVect &pos = owner->positions();
  URANGE_CHECK(idx1, pos.size());
  URANGE_CHECK(idx2, pos.size());
  URANGE_CHECK(idx3, pos.size());
  URANGE_CHECK(idx4, pos.size());
  PRECONDITION((!(maxDihedralDeg < minDihedralDeg)) &&
                   ((maxDihedralDeg - minDihedralDeg) < 360.0),
               "bad bounds");

  double dihedral = 0.0;
  if (relative) {
    RDGeom::Point3D p1 = *((RDGeom::Point3D *)pos[idx1]);
    RDGeom::Point3D p2 = *((RDGeom::Point3D *)pos[idx2]);
    RDGeom::Point3D p3 = *((RDGeom::Point3D *)pos[idx3]);
    RDGeom::Point3D p4 = *((RDGeom::Point3D *)pos[idx4]);
    RDGeom::Point3D r12 = p2 - p1;
    RDGeom::Point3D r23 = p3 - p2;
    RDGeom::Point3D r34 = p4 - p3;

    RDGeom::Point3D n123 = r12.crossProduct(r23);
    double nIJKSqLength = n123.lengthSq();
    RDGeom::Point3D n234 = r23.crossProduct(r34);
    double nJKLSqLength = n234.lengthSq();
    RDGeom::Point3D m = n123.crossProduct(r23);
    // we want a signed dihedral, that's why we use atan2 instead of acos
    dihedral =
        RAD2DEG *
        (-atan2(m.dotProduct(n234) / sqrt(nJKLSqLength * m.lengthSq()),
                n123.dotProduct(n234) / sqrt(nIJKSqLength * nJKLSqLength)));
  }
  dp_forceField = owner;
  d_at1Idx = idx1;
  d_at2Idx = idx2;
  d_at3Idx = idx3;
  d_at4Idx = idx4;
  minDihedralDeg += dihedral;
  maxDihedralDeg += dihedral;
  _pretreatDihedrals(minDihedralDeg, maxDihedralDeg);
  d_minDihedralDeg = minDihedralDeg;
  d_maxDihedralDeg = maxDihedralDeg;
  d_forceConstant = forceConst;
}

double TorsionConstraintContrib::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                     pos[3 * d_at4Idx + 2]);

  RDGeom::Point3D r1 = p2 - p1;
  RDGeom::Point3D r2 = p3 - p2;
  RDGeom::Point3D r4 = p4 - p3;

  RDGeom::Point3D n123 = r1.crossProduct(r2);
  double n123SqLength = n123.lengthSq();
  RDGeom::Point3D n234 = r2.crossProduct(r4);
  double n234SqLength = n234.lengthSq();
  RDGeom::Point3D m = n123.crossProduct(r2);
  // we want a signed dihedral, that's why we use atan2 instead of acos
  double dihedral =
      RAD2DEG *
      (-atan2(m.dotProduct(n234) / sqrt(n234SqLength * m.lengthSq()),
              n123.dotProduct(n234) / sqrt(n123SqLength * n234SqLength)));
  if (dihedral < 0.0) dihedral += 360.0;
  double dihedralTerm = 0.0;
  if (dihedral < d_minDihedralDeg) {
    dihedralTerm = dihedral - d_minDihedralDeg;
  } else if (dihedral > d_maxDihedralDeg) {
    dihedralTerm = dihedral - d_maxDihedralDeg;
  }
  double const c = 0.5 * DEG2RAD * DEG2RAD;
  double res = c * d_forceConstant * dihedralTerm * dihedralTerm;

  return res;
}

void TorsionConstraintContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                     pos[3 * d_at4Idx + 2]);
  double *g[4] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
                  &(grad[3 * d_at3Idx]), &(grad[3 * d_at4Idx])};

  RDGeom::Point3D r[4] = {p1 - p2, p3 - p2, p2 - p3, p4 - p3};
  RDGeom::Point3D t[2] = {r[0].crossProduct(r[1]), r[2].crossProduct(r[3])};
  double d[2] = {t[0].length(), t[1].length()};
  if (isDoubleZero(d[0]) || isDoubleZero(d[1])) {
    return;
  }
  t[0] /= d[0];
  t[1] /= d[1];
  double cosPhi = t[0].dotProduct(t[1]);
  clipToOne(cosPhi);
  double sinPhiSq = 1.0 - cosPhi * cosPhi;
  double sinPhi = ((sinPhiSq > 0.0) ? sqrt(sinPhiSq) : 0.0);
  // dE/dPhi is independent of cartesians:

  RDGeom::Point3D n123 = (-r[0]).crossProduct(r[1]);
  double n123SqLength = n123.lengthSq();
  RDGeom::Point3D n234 = r[1].crossProduct(r[3]);
  double n234SqLength = n234.lengthSq();
  RDGeom::Point3D m = n123.crossProduct(r[1]);
  // we want a signed dihedral, that's why we use atan2 instead of acos
  double dihedral =
      RAD2DEG *
      (-atan2(m.dotProduct(n234) / sqrt(n234SqLength * m.lengthSq()),
              n123.dotProduct(n234) / sqrt(n123SqLength * n234SqLength)));
  if (dihedral < 0.0) dihedral += 360.0;
  // double dihedral = RAD2DEG * acos(cosPhi);
  double dihedralTerm = 0.0;
  if (dihedral < d_minDihedralDeg) {
    dihedralTerm = dihedral - d_minDihedralDeg;
  } else if (dihedral > d_maxDihedralDeg) {
    dihedralTerm = dihedral - d_maxDihedralDeg;
  }
  if (dihedral > 180.0) dihedralTerm = -dihedralTerm;
  double dE_dPhi = DEG2RAD * d_forceConstant * dihedralTerm;

  // FIX: use a tolerance here
  // this is hacky, but it's per the
  // recommendation from Niketic and Rasmussen:
  double sinTerm =
      -dE_dPhi * (isDoubleZero(sinPhi) ? (1.0 / cosPhi) : (1.0 / sinPhi));
  Utils::calcTorsionGrad(r, t, d, g, sinTerm, cosPhi);
}
}
}