1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "TorsionAngle.h"
#include "TorsionConstraint.h"
#include "Params.h"
#include <cmath>
#include <RDGeneral/BoostStartInclude.h>
#include <boost/math/special_functions/round.hpp>
#include <RDGeneral/BoostEndInclude.h>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
namespace ForceFields {
namespace UFF {
void _pretreatDihedrals(double &minDihedralDeg, double &maxDihedralDeg) {
if (minDihedralDeg < 0.0) minDihedralDeg += 360.0;
if (maxDihedralDeg < 0.0) maxDihedralDeg += 360.0;
minDihedralDeg = fmod(minDihedralDeg, 360.0);
maxDihedralDeg = fmod(maxDihedralDeg, 360.0);
if (maxDihedralDeg < minDihedralDeg) maxDihedralDeg += 360.0;
}
TorsionConstraintContrib::TorsionConstraintContrib(
ForceField *owner, unsigned int idx1, unsigned int idx2, unsigned int idx3,
unsigned int idx4, double minDihedralDeg, double maxDihedralDeg,
double forceConst) {
PRECONDITION(owner, "bad owner");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
URANGE_CHECK(idx4, owner->positions().size());
PRECONDITION((!(maxDihedralDeg < minDihedralDeg)) &&
((maxDihedralDeg - minDihedralDeg) < 360.0),
"bad bounds");
_pretreatDihedrals(minDihedralDeg, maxDihedralDeg);
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_at4Idx = idx4;
d_minDihedralDeg = minDihedralDeg;
d_maxDihedralDeg = maxDihedralDeg;
d_forceConstant = forceConst;
}
TorsionConstraintContrib::TorsionConstraintContrib(
ForceField *owner, unsigned int idx1, unsigned int idx2, unsigned int idx3,
unsigned int idx4, bool relative, double minDihedralDeg,
double maxDihedralDeg, double forceConst) {
PRECONDITION(owner, "bad owner");
const RDGeom::PointPtrVect &pos = owner->positions();
URANGE_CHECK(idx1, pos.size());
URANGE_CHECK(idx2, pos.size());
URANGE_CHECK(idx3, pos.size());
URANGE_CHECK(idx4, pos.size());
PRECONDITION((!(maxDihedralDeg < minDihedralDeg)) &&
((maxDihedralDeg - minDihedralDeg) < 360.0),
"bad bounds");
double dihedral = 0.0;
if (relative) {
RDGeom::Point3D p1 = *((RDGeom::Point3D *)pos[idx1]);
RDGeom::Point3D p2 = *((RDGeom::Point3D *)pos[idx2]);
RDGeom::Point3D p3 = *((RDGeom::Point3D *)pos[idx3]);
RDGeom::Point3D p4 = *((RDGeom::Point3D *)pos[idx4]);
RDGeom::Point3D r12 = p2 - p1;
RDGeom::Point3D r23 = p3 - p2;
RDGeom::Point3D r34 = p4 - p3;
RDGeom::Point3D n123 = r12.crossProduct(r23);
double nIJKSqLength = n123.lengthSq();
RDGeom::Point3D n234 = r23.crossProduct(r34);
double nJKLSqLength = n234.lengthSq();
RDGeom::Point3D m = n123.crossProduct(r23);
// we want a signed dihedral, that's why we use atan2 instead of acos
dihedral =
RAD2DEG *
(-atan2(m.dotProduct(n234) / sqrt(nJKLSqLength * m.lengthSq()),
n123.dotProduct(n234) / sqrt(nIJKSqLength * nJKLSqLength)));
}
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_at4Idx = idx4;
minDihedralDeg += dihedral;
maxDihedralDeg += dihedral;
_pretreatDihedrals(minDihedralDeg, maxDihedralDeg);
d_minDihedralDeg = minDihedralDeg;
d_maxDihedralDeg = maxDihedralDeg;
d_forceConstant = forceConst;
}
double TorsionConstraintContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
RDGeom::Point3D r1 = p2 - p1;
RDGeom::Point3D r2 = p3 - p2;
RDGeom::Point3D r4 = p4 - p3;
RDGeom::Point3D n123 = r1.crossProduct(r2);
double n123SqLength = n123.lengthSq();
RDGeom::Point3D n234 = r2.crossProduct(r4);
double n234SqLength = n234.lengthSq();
RDGeom::Point3D m = n123.crossProduct(r2);
// we want a signed dihedral, that's why we use atan2 instead of acos
double dihedral =
RAD2DEG *
(-atan2(m.dotProduct(n234) / sqrt(n234SqLength * m.lengthSq()),
n123.dotProduct(n234) / sqrt(n123SqLength * n234SqLength)));
if (dihedral < 0.0) dihedral += 360.0;
double dihedralTerm = 0.0;
if (dihedral < d_minDihedralDeg) {
dihedralTerm = dihedral - d_minDihedralDeg;
} else if (dihedral > d_maxDihedralDeg) {
dihedralTerm = dihedral - d_maxDihedralDeg;
}
double const c = 0.5 * DEG2RAD * DEG2RAD;
double res = c * d_forceConstant * dihedralTerm * dihedralTerm;
return res;
}
void TorsionConstraintContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double *g[4] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
&(grad[3 * d_at3Idx]), &(grad[3 * d_at4Idx])};
RDGeom::Point3D r[4] = {p1 - p2, p3 - p2, p2 - p3, p4 - p3};
RDGeom::Point3D t[2] = {r[0].crossProduct(r[1]), r[2].crossProduct(r[3])};
double d[2] = {t[0].length(), t[1].length()};
if (isDoubleZero(d[0]) || isDoubleZero(d[1])) {
return;
}
t[0] /= d[0];
t[1] /= d[1];
double cosPhi = t[0].dotProduct(t[1]);
clipToOne(cosPhi);
double sinPhiSq = 1.0 - cosPhi * cosPhi;
double sinPhi = ((sinPhiSq > 0.0) ? sqrt(sinPhiSq) : 0.0);
// dE/dPhi is independent of cartesians:
RDGeom::Point3D n123 = (-r[0]).crossProduct(r[1]);
double n123SqLength = n123.lengthSq();
RDGeom::Point3D n234 = r[1].crossProduct(r[3]);
double n234SqLength = n234.lengthSq();
RDGeom::Point3D m = n123.crossProduct(r[1]);
// we want a signed dihedral, that's why we use atan2 instead of acos
double dihedral =
RAD2DEG *
(-atan2(m.dotProduct(n234) / sqrt(n234SqLength * m.lengthSq()),
n123.dotProduct(n234) / sqrt(n123SqLength * n234SqLength)));
if (dihedral < 0.0) dihedral += 360.0;
// double dihedral = RAD2DEG * acos(cosPhi);
double dihedralTerm = 0.0;
if (dihedral < d_minDihedralDeg) {
dihedralTerm = dihedral - d_minDihedralDeg;
} else if (dihedral > d_maxDihedralDeg) {
dihedralTerm = dihedral - d_maxDihedralDeg;
}
if (dihedral > 180.0) dihedralTerm = -dihedralTerm;
double dE_dPhi = DEG2RAD * d_forceConstant * dihedralTerm;
// FIX: use a tolerance here
// this is hacky, but it's per the
// recommendation from Niketic and Rasmussen:
double sinTerm =
-dE_dPhi * (isDoubleZero(sinPhi) ? (1.0 / cosPhi) : (1.0 / sinPhi));
Utils::calcTorsionGrad(r, t, d, g, sinTerm, cosPhi);
}
}
}
|