File: GridUtils.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (167 lines) | stat: -rw-r--r-- 6,088 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// $Id$
//
//   Copyright (C) 2005-2007 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "GridUtils.h"
#include "Grid3D.h"
#include "UniformGrid3D.h"
#include "point.h"
#include <RDGeneral/Exceptions.h>
#include <DataStructs/DiscreteValueVect.h>
#include <cmath>

using namespace RDKit;
namespace RDGeom {

template <class GRIDTYPE>
double tverskyIndex(const GRIDTYPE &grid1, const GRIDTYPE &grid2, double alpha, double beta) {
  if (!grid1.compareParams(grid2)) {
    throw ValueErrorException("Grid parameters do not match");
  }
  const DiscreteValueVect *v1 = grid1.getOccupancyVect();
  const DiscreteValueVect *v2 = grid2.getOccupancyVect();
  unsigned int dist = computeL1Norm(*v1, *v2);
  unsigned int totv1 = v1->getTotalVal();
  unsigned int totv2 = v2->getTotalVal();
  double inter = 0.5 * (totv1 + totv2 - dist);
//  double alpha = 1.0;
//  double beta = 1.0;
  double tversky_res = inter / (alpha * (1.0 * totv1 - inter) + beta * (1.0 * totv2 - inter) + inter);
//  double res = dist / (dist + inter);
  return tversky_res;
}

template RDKIT_RDGEOMETRYLIB_EXPORT double tverskyIndex(const UniformGrid3D &grid1,
                                 const UniformGrid3D &grid2, 
				 double alpha, 
				 double beta);

template <class GRIDTYPE>
double tanimotoDistance(const GRIDTYPE &grid1, const GRIDTYPE &grid2) {
  if (!grid1.compareParams(grid2)) {
    throw ValueErrorException("Grid parameters do not match");
  }
  const DiscreteValueVect *v1 = grid1.getOccupancyVect();
  const DiscreteValueVect *v2 = grid2.getOccupancyVect();
  unsigned int dist = computeL1Norm(*v1, *v2);
  unsigned int totv1 = v1->getTotalVal();
  unsigned int totv2 = v2->getTotalVal();
  double inter = 0.5 * (totv1 + totv2 - dist);
  double res = dist / (dist + inter);
  return res;
}

template RDKIT_RDGEOMETRYLIB_EXPORT double tanimotoDistance(const UniformGrid3D &grid1,
                                 const UniformGrid3D &grid2);

template <class GRIDTYPE>
double protrudeDistance(const GRIDTYPE &grid1, const GRIDTYPE &grid2) {
  if (!grid1.compareParams(grid2)) {
    throw ValueErrorException("Grid parameters do not match");
  }
  const DiscreteValueVect *v1 = grid1.getOccupancyVect();
  const DiscreteValueVect *v2 = grid2.getOccupancyVect();
  unsigned int totv1 = v1->getTotalVal();
  unsigned int totv2 = v2->getTotalVal();
  unsigned int totProtrude = computeL1Norm(*v1, *v2);
  unsigned int intersectVolume = (totv1 + totv2 - totProtrude) / 2;
  double res = (1.0 * totv1 - intersectVolume) / (1.0 * totv1);
  return res;
}

template RDKIT_RDGEOMETRYLIB_EXPORT double protrudeDistance(const UniformGrid3D &grid1,
                                 const UniformGrid3D &grid2);

std::map<int, std::vector<int> > gridIdxCache;
std::vector<int> computeGridIndices(const UniformGrid3D &grid,
                                    double windowRadius) {
  double gridSpacing = grid.getSpacing();
  int radInGrid = static_cast<int>(ceil(windowRadius / gridSpacing));
  // if(gridIdxCache.count(radInGrid)>0){
  //  return gridIdxCache[radInGrid];
  //}
  unsigned int dX, dY;
  dX = grid.getNumX();
  dY = grid.getNumY();
  std::vector<int> res;
  for (int i = -radInGrid; i <= radInGrid; ++i) {
    for (int j = -radInGrid; j <= radInGrid; ++j) {
      for (int k = -radInGrid; k <= radInGrid; ++k) {
        double r2 = i * i + j * j + k * k;
        int d = static_cast<int>(sqrt(r2));
        if (d <= radInGrid) {
          res.push_back((i * dY + j) * dX + k);
        }
      }
    }
  }
  gridIdxCache[radInGrid] = res;
  return res;
}

Point3D computeGridCentroid(const UniformGrid3D &grid, const Point3D &pt,
                            double windowRadius, double &weightSum) {
  weightSum = 0.0;
  const DiscreteValueVect *v1 = grid.getOccupancyVect();
  Point3D centroid(0.0, 0.0, 0.0);

  unsigned int idxI = grid.getGridPointIndex(pt);
  std::vector<int> indicesInSphere = computeGridIndices(grid, windowRadius);
  for (std::vector<int>::const_iterator it = indicesInSphere.begin();
       it != indicesInSphere.end(); ++it) {
    int idx = idxI + *it;
    if (idx >= 0 && static_cast<unsigned int>(idx) < v1->getLength()) {
      unsigned int wt = v1->getVal(idx);
      centroid += grid.getGridPointLoc(static_cast<unsigned int>(idx)) * wt;
      weightSum += wt;
    }
  }
  return centroid / weightSum;
}

std::vector<Point3D> findGridTerminalPoints(const UniformGrid3D &grid,
                                            double windowRadius,
                                            double inclusionFraction) {
  std::vector<Point3D> res;
  std::vector<int> indicesInSphere = computeGridIndices(grid, windowRadius);
  const DiscreteValueVect *storage = grid.getOccupancyVect();
  unsigned int maxGridVal = (0x1 << storage->getNumBitsPerVal()) - 1;
  for (unsigned int i = 0; i < storage->getLength(); ++i) {
    if (storage->getVal(i) < maxGridVal) {
      continue;
    }

    // -----------
    // compute the weighted volume of the shape inside the sphere:
    double volInSphere = 0.0;
    unsigned int nPtsHere = 0;
    for (std::vector<int>::const_iterator it = indicesInSphere.begin();
         it != indicesInSphere.end(); ++it) {
      int idx = i + *it;
      if (idx >= 0 && static_cast<unsigned int>(idx) < storage->getLength()) {
        volInSphere += storage->getVal(static_cast<unsigned int>(idx));
        ++nPtsHere;
      }
    }
    // -----
    // the shape may be cut off by the edge of the grid, so
    // the actual max volume in the sphere may well be less
    // than the theoretical max:
    double maxPossValInSphere = nPtsHere * maxGridVal;
    if (volInSphere / maxPossValInSphere <= inclusionFraction) {
      Point3D ptI = grid.getGridPointLoc(i);
      double weightSum;
      Point3D centroid =
          computeGridCentroid(grid, ptI, windowRadius, weightSum);
      res.push_back(centroid);
    }
  }
  return res;
}
}