1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
//
// Copyright (C) 2003-2018 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "RDKitBase.h"
#include <list>
#include "QueryAtom.h"
#include "QueryOps.h"
#include "MonomerInfo.h"
#include <Geometry/Transform3D.h>
#include <Geometry/point.h>
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
namespace RDKit {
// Local utility functionality:
namespace {
Atom *getAtomNeighborNot(ROMol *mol, const Atom *atom, const Atom *other) {
PRECONDITION(mol, "bad molecule");
PRECONDITION(atom, "bad atom");
PRECONDITION(atom->getDegree() > 1, "bad degree");
PRECONDITION(other, "bad atom");
Atom *res = nullptr;
ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(atom);
while (nbrIdx != endNbrs) {
if (*nbrIdx != other->getIdx()) {
res = mol->getAtomWithIdx(*nbrIdx);
break;
}
++nbrIdx;
}
POSTCONDITION(res, "no neighbor found");
return res;
}
void setHydrogenCoords(ROMol *mol, unsigned int hydIdx, unsigned int heavyIdx) {
// we will loop over all the coordinates
PRECONDITION(mol, "bad molecule");
PRECONDITION(heavyIdx != hydIdx, "degenerate atoms");
Atom *hydAtom = mol->getAtomWithIdx(hydIdx);
PRECONDITION(mol->getAtomDegree(hydAtom) == 1, "bad atom degree");
const Bond *bond = mol->getBondBetweenAtoms(heavyIdx, hydIdx);
PRECONDITION(bond, "no bond between atoms");
const Atom *heavyAtom = mol->getAtomWithIdx(heavyIdx);
double bondLength =
PeriodicTable::getTable()->getRb0(1) +
PeriodicTable::getTable()->getRb0(heavyAtom->getAtomicNum());
RDGeom::Point3D dirVect(0, 0, 0);
RDGeom::Point3D perpVect, rotnAxis, nbrPerp;
RDGeom::Point3D nbr1Vect, nbr2Vect, nbr3Vect;
RDGeom::Transform3D tform;
RDGeom::Point3D heavyPos, hydPos;
const Atom *nbr1 = nullptr, *nbr2 = nullptr, *nbr3 = nullptr;
const Bond *nbrBond;
ROMol::ADJ_ITER nbrIdx, endNbrs;
switch (heavyAtom->getDegree()) {
case 1:
// --------------------------------------------------------------------------
// No other atoms present:
// --------------------------------------------------------------------------
dirVect.z = 1;
// loop over the conformations and set the coordinates
for (auto cfi = mol->beginConformers(); cfi != mol->endConformers();
cfi++) {
heavyPos = (*cfi)->getAtomPos(heavyIdx);
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
}
break;
case 2:
// --------------------------------------------------------------------------
// One other neighbor:
// --------------------------------------------------------------------------
nbr1 = getAtomNeighborNot(mol, heavyAtom, hydAtom);
for (auto cfi = mol->beginConformers(); cfi != mol->endConformers();
++cfi) {
heavyPos = (*cfi)->getAtomPos(heavyIdx);
RDGeom::Point3D nbr1Pos = (*cfi)->getAtomPos(nbr1->getIdx());
// get a normalized vector pointing away from the neighbor:
nbr1Vect = nbr1Pos - heavyPos;
if (fabs(nbr1Vect.lengthSq()) < 1e-4) {
// no difference, which likely indicates that we have redundant atoms.
// just put it on top of the heavy atom. This was #678
(*cfi)->setAtomPos(hydIdx, heavyPos);
continue;
}
nbr1Vect.normalize();
nbr1Vect *= -1;
// ok, nbr1Vect points away from the other atom, figure out where
// this H goes:
switch (heavyAtom->getHybridization()) {
case Atom::SP3:
// get a perpendicular to nbr1Vect:
perpVect = nbr1Vect.getPerpendicular();
// and move off it:
tform.SetRotation((180 - 109.471) * M_PI / 180., perpVect);
dirVect = tform * nbr1Vect;
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
break;
case Atom::SP2:
// default position is to just take an arbitrary perpendicular:
perpVect = nbr1Vect.getPerpendicular();
if (nbr1->getDegree() > 1) {
// can we use the neighboring atom to establish a perpendicular?
nbrBond = mol->getBondBetweenAtoms(heavyIdx, nbr1->getIdx());
if (nbrBond->getIsAromatic() ||
nbrBond->getBondType() == Bond::DOUBLE) {
nbr2 = getAtomNeighborNot(mol, nbr1, heavyAtom);
nbr2Vect =
nbr1Pos.directionVector((*cfi)->getAtomPos(nbr2->getIdx()));
perpVect = nbr2Vect.crossProduct(nbr1Vect);
}
}
perpVect.normalize();
// rotate the nbr1Vect 60 degrees about perpVect and we're done:
tform.SetRotation(60. * M_PI / 180., perpVect);
dirVect = tform * nbr1Vect;
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
break;
case Atom::SP:
// just lay the H along the vector:
dirVect = nbr1Vect;
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
break;
default:
// FIX: handle other hybridizations
// for now, just lay the H along the vector:
dirVect = nbr1Vect;
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
}
}
break;
case 3:
// --------------------------------------------------------------------------
// Two other neighbors:
// --------------------------------------------------------------------------
boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(heavyAtom);
while (nbrIdx != endNbrs) {
if (*nbrIdx != hydIdx) {
if (!nbr1)
nbr1 = mol->getAtomWithIdx(*nbrIdx);
else
nbr2 = mol->getAtomWithIdx(*nbrIdx);
}
++nbrIdx;
}
TEST_ASSERT(nbr1);
TEST_ASSERT(nbr2);
for (auto cfi = mol->beginConformers(); cfi != mol->endConformers();
++cfi) {
// start along the average of the two vectors:
heavyPos = (*cfi)->getAtomPos(heavyIdx);
nbr1Vect = heavyPos - (*cfi)->getAtomPos(nbr1->getIdx());
nbr2Vect = heavyPos - (*cfi)->getAtomPos(nbr2->getIdx());
if (fabs(nbr1Vect.lengthSq()) < 1e-4 ||
fabs(nbr2Vect.lengthSq()) < 1e-4) {
// no difference, which likely indicates that we have redundant atoms.
// just put it on top of the heavy atom. This was #678
(*cfi)->setAtomPos(hydIdx, heavyPos);
continue;
}
nbr1Vect.normalize();
nbr2Vect.normalize();
dirVect = nbr1Vect + nbr2Vect;
dirVect.normalize();
switch (heavyAtom->getHybridization()) {
case Atom::SP3:
// get the perpendicular to the neighbors:
nbrPerp = nbr1Vect.crossProduct(nbr2Vect);
// and the perpendicular to that:
rotnAxis = nbrPerp.crossProduct(dirVect);
// and then rotate about that:
rotnAxis.normalize();
tform.SetRotation((109.471 / 2) * M_PI / 180., rotnAxis);
dirVect = tform * dirVect;
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
break;
case Atom::SP2:
// don't need to do anything here, the H atom goes right on the
// direction vector
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
break;
default:
// FIX: handle other hybridizations
// for now, just lay the H along the neighbor vector;
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
break;
}
}
break;
case 4:
// --------------------------------------------------------------------------
// Three other neighbors:
// --------------------------------------------------------------------------
boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(heavyAtom);
if (heavyAtom->hasProp(common_properties::_CIPCode)) {
// if the central atom is chiral, we'll order the neighbors
// by CIP rank:
std::vector<std::pair<unsigned int, int>> nbrs;
while (nbrIdx != endNbrs) {
if (*nbrIdx != hydIdx) {
const Atom *tAtom = mol->getAtomWithIdx(*nbrIdx);
unsigned int cip = 0;
tAtom->getPropIfPresent<unsigned int>(common_properties::_CIPRank,
cip);
nbrs.push_back(std::make_pair(cip, rdcast<int>(*nbrIdx)));
}
++nbrIdx;
}
std::sort(nbrs.begin(), nbrs.end());
nbr1 = mol->getAtomWithIdx(nbrs[0].second);
nbr2 = mol->getAtomWithIdx(nbrs[1].second);
nbr3 = mol->getAtomWithIdx(nbrs[2].second);
} else {
// central atom isn't chiral, so the neighbor ordering isn't important:
while (nbrIdx != endNbrs) {
if (*nbrIdx != hydIdx) {
if (!nbr1) {
nbr1 = mol->getAtomWithIdx(*nbrIdx);
} else if (!nbr2) {
nbr2 = mol->getAtomWithIdx(*nbrIdx);
} else {
nbr3 = mol->getAtomWithIdx(*nbrIdx);
}
}
++nbrIdx;
}
}
TEST_ASSERT(nbr1);
TEST_ASSERT(nbr2);
TEST_ASSERT(nbr3);
for (auto cfi = mol->beginConformers(); cfi != mol->endConformers();
++cfi) {
// use the average of the three vectors:
heavyPos = (*cfi)->getAtomPos(heavyIdx);
nbr1Vect = heavyPos - (*cfi)->getAtomPos(nbr1->getIdx());
nbr2Vect = heavyPos - (*cfi)->getAtomPos(nbr2->getIdx());
nbr3Vect = heavyPos - (*cfi)->getAtomPos(nbr3->getIdx());
if (fabs(nbr1Vect.lengthSq()) < 1e-4 ||
fabs(nbr2Vect.lengthSq()) < 1e-4 ||
fabs(nbr3Vect.lengthSq()) < 1e-4) {
// no difference, which likely indicates that we have redundant atoms.
// just put it on top of the heavy atom. This was #678
(*cfi)->setAtomPos(hydIdx, heavyPos);
continue;
}
nbr1Vect.normalize();
nbr2Vect.normalize();
nbr3Vect.normalize();
// if three neighboring atoms are more or less planar, this
// is going to be in a quasi-random (but almost definitely bad)
// direction...
// correct for this (issue 2951221):
if (fabs(nbr3Vect.dotProduct(nbr1Vect.crossProduct(nbr2Vect))) < 0.1) {
if ((*cfi)->is3D()) {
// compute the normal:
dirVect = nbr1Vect.crossProduct(nbr2Vect);
std::string cipCode;
if (heavyAtom->getPropIfPresent(common_properties::_CIPCode,
cipCode)) {
// the heavy atom is a chiral center, make sure
// that we went go the right direction to preserve
// its chirality. We use the chiral volume for this:
RDGeom::Point3D v1 = dirVect - nbr3Vect;
RDGeom::Point3D v2 = nbr1Vect - nbr3Vect;
RDGeom::Point3D v3 = nbr2Vect - nbr3Vect;
double vol = v1.dotProduct(v2.crossProduct(v3));
// FIX: this is almost certainly wrong and should use the chiral
// tag
if ((cipCode == "S" && vol < 0) || (cipCode == "R" && vol > 0)) {
dirVect *= -1;
}
}
} else {
// this was github #908
// We're in a 2D conformation, put the H between the two neighbors
// that have the widest angle between them:
double minDot = nbr1Vect.dotProduct(nbr2Vect);
dirVect = nbr1Vect + nbr2Vect;
if (nbr2Vect.dotProduct(nbr3Vect) < minDot) {
minDot = nbr2Vect.dotProduct(nbr3Vect);
dirVect = nbr2Vect + nbr3Vect;
}
if (nbr1Vect.dotProduct(nbr3Vect) < minDot) {
minDot = nbr1Vect.dotProduct(nbr3Vect);
dirVect = nbr1Vect + nbr3Vect;
}
dirVect *= -1;
}
} else {
dirVect = nbr1Vect + nbr2Vect + nbr3Vect;
}
dirVect.normalize();
hydPos = heavyPos + dirVect * bondLength;
(*cfi)->setAtomPos(hydIdx, hydPos);
}
break;
default:
// --------------------------------------------------------------------------
// FIX: figure out what to do here
// --------------------------------------------------------------------------
hydPos = heavyPos + dirVect * bondLength;
for (auto cfi = mol->beginConformers(); cfi != mol->endConformers();
++cfi) {
(*cfi)->setAtomPos(hydIdx, hydPos);
}
break;
}
}
void AssignHsResidueInfo(RWMol &mol) {
int max_serial = 0;
unsigned int stopIdx = mol.getNumAtoms();
for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) {
AtomPDBResidueInfo *info =
(AtomPDBResidueInfo *)(mol.getAtomWithIdx(aidx)->getMonomerInfo());
if (info && info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE &&
info->getSerialNumber() > max_serial) {
max_serial = info->getSerialNumber();
}
}
AtomPDBResidueInfo *current_info = 0;
int current_h_id = 0;
for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) {
Atom *newAt = mol.getAtomWithIdx(aidx);
AtomPDBResidueInfo *info = (AtomPDBResidueInfo *)(newAt->getMonomerInfo());
if (info && info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE) {
ROMol::ADJ_ITER begin, end;
boost::tie(begin, end) = mol.getAtomNeighbors(newAt);
while (begin != end) {
if (mol.getAtomWithIdx(*begin)->getAtomicNum() == 1) {
// Make all Hs unique - increment id even for existing
++current_h_id;
// skip if hyrogen already has PDB info
AtomPDBResidueInfo *h_info =
(AtomPDBResidueInfo *)mol.getAtomWithIdx(*begin)
->getMonomerInfo();
if (h_info && h_info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE)
continue;
// the hydrogens have unique names on residue basis (H1, H2, ...)
if (!current_info ||
current_info->getResidueNumber() != info->getResidueNumber() ||
current_info->getChainId() != info->getChainId()) {
current_h_id = 1;
current_info = info;
}
std::string h_label = boost::lexical_cast<std::string>(current_h_id);
if (h_label.length() > 3)
h_label = h_label.substr(h_label.length() - 3, 3);
while (h_label.length() < 3) h_label = h_label + " ";
h_label = "H" + h_label;
// wrap around id to '3H12'
h_label = h_label.substr(3, 1) + h_label.substr(0, 3);
AtomPDBResidueInfo *newInfo = new AtomPDBResidueInfo(
h_label, max_serial, "", info->getResidueName(),
info->getResidueNumber(), info->getChainId(), "",
info->getIsHeteroAtom());
mol.getAtomWithIdx(*begin)->setMonomerInfo(newInfo);
++max_serial;
}
++begin;
}
}
}
}
} // end of unnamed namespace
namespace MolOps {
void addHs(RWMol &mol, bool explicitOnly, bool addCoords,
const UINT_VECT *onlyOnAtoms, bool addResidueInfo) {
// when we hit each atom, clear its computed properties
// NOTE: it is essential that we not clear the ring info in the
// molecule's computed properties. We don't want to have to
// regenerate that. This caused Issue210 and Issue212:
mol.clearComputedProps(false);
// precompute the number of hydrogens we are going to add so that we can
// pre-allocate the necessary space on the conformations of the molecule
// for their coordinates
unsigned int numAddHyds = 0;
for (auto at : mol.atoms()) {
if (!onlyOnAtoms || std::find(onlyOnAtoms->begin(), onlyOnAtoms->end(),
at->getIdx()) != onlyOnAtoms->end()) {
numAddHyds += at->getNumExplicitHs();
if (!explicitOnly) {
numAddHyds += at->getNumImplicitHs();
}
}
}
unsigned int nSize = mol.getNumAtoms() + numAddHyds;
// loop over the conformations of the molecule and allocate new space
// for the H locations (need to do this even if we aren't adding coords so
// that the conformers have the correct number of atoms).
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers(); ++cfi) {
(*cfi)->reserve(nSize);
}
unsigned int stopIdx = mol.getNumAtoms();
for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) {
if (onlyOnAtoms && std::find(onlyOnAtoms->begin(), onlyOnAtoms->end(),
aidx) == onlyOnAtoms->end()) {
continue;
}
Atom *newAt = mol.getAtomWithIdx(aidx);
unsigned int newIdx;
newAt->clearComputedProps();
// always convert explicit Hs
unsigned int onumexpl = newAt->getNumExplicitHs();
for (unsigned int i = 0; i < onumexpl; i++) {
newIdx = mol.addAtom(new Atom(1), false, true);
mol.addBond(aidx, newIdx, Bond::SINGLE);
mol.getAtomWithIdx(newIdx)->updatePropertyCache();
if (addCoords) setHydrogenCoords(&mol, newIdx, aidx);
}
// clear the local property
newAt->setNumExplicitHs(0);
if (!explicitOnly) {
// take care of implicits
for (unsigned int i = 0; i < mol.getAtomWithIdx(aidx)->getNumImplicitHs();
i++) {
newIdx = mol.addAtom(new Atom(1), false, true);
mol.addBond(aidx, newIdx, Bond::SINGLE);
// set the isImplicit label so that we can strip these back
// off later if need be.
mol.getAtomWithIdx(newIdx)->setProp(common_properties::isImplicit, 1);
mol.getAtomWithIdx(newIdx)->updatePropertyCache();
if (addCoords) setHydrogenCoords(&mol, newIdx, aidx);
}
// be very clear about implicits not being allowed in this representation
newAt->setProp(common_properties::origNoImplicit, newAt->getNoImplicit(),
true);
newAt->setNoImplicit(true);
}
// update the atom's derived properties (valence count, etc.)
newAt->updatePropertyCache();
}
// take care of AtomPDBResidueInfo for Hs if root atom has it
if (addResidueInfo) AssignHsResidueInfo(mol);
}
ROMol *addHs(const ROMol &mol, bool explicitOnly, bool addCoords,
const UINT_VECT *onlyOnAtoms, bool addResidueInfo) {
auto *res = new RWMol(mol);
addHs(*res, explicitOnly, addCoords, onlyOnAtoms, addResidueInfo);
return static_cast<ROMol *>(res);
};
namespace {
// returns whether or not an adjustment was made, in case we want that info
bool adjustStereoAtomsIfRequired(RWMol &mol, const Atom *atom,
const Atom *heavyAtom) {
PRECONDITION(atom != nullptr, "bad atom");
PRECONDITION(heavyAtom != nullptr, "bad heavy atom");
// nothing we can do if the degree is only 2 (and we should have covered
// that earlier anyway)
if (heavyAtom->getDegree() == 2) return false;
const auto &cbnd =
mol.getBondBetweenAtoms(atom->getIdx(), heavyAtom->getIdx());
if (!cbnd) return false;
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomBonds(heavyAtom))) {
Bond *bnd = mol[nbri];
if (bnd->getBondType() == Bond::DOUBLE &&
bnd->getStereo() > Bond::STEREOANY) {
auto sAtomIt = std::find(bnd->getStereoAtoms().begin(),
bnd->getStereoAtoms().end(), atom->getIdx());
if (sAtomIt != bnd->getStereoAtoms().end()) {
// sAtomIt points to the position of this atom's index in the list.
// find the index of another atom attached to the heavy atom and
// use it to update sAtomIt
unsigned int dblNbrIdx = bnd->getOtherAtomIdx(heavyAtom->getIdx());
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomNeighbors(heavyAtom))) {
const auto &nbr = mol[nbri];
if (nbr->getIdx() == dblNbrIdx || nbr->getIdx() == atom->getIdx())
continue;
*sAtomIt = nbr->getIdx();
bool madeAdjustment = true;
switch (bnd->getStereo()) {
case Bond::STEREOCIS:
bnd->setStereo(Bond::STEREOTRANS);
break;
case Bond::STEREOTRANS:
bnd->setStereo(Bond::STEREOCIS);
break;
default:
// I think we shouldn't need to do anything with E and Z...
madeAdjustment = false;
break;
}
return madeAdjustment;
}
}
}
}
return false;
}
} // end of anonymous namespace
//
// This routine removes hydrogens (and bonds to them) from the molecular graph.
// Other Atom and bond indices may be affected by the removal.
//
// NOTES:
// - Hydrogens which aren't connected to a heavy atom will not be
// removed. This prevents molecules like "[H][H]" from having
// all atoms removed.
// - Labelled hydrogen (e.g. atoms with atomic number=1, but isotope > 1),
// will not be removed.
// - two coordinate Hs, like the central H in C[H-]C, will not be removed
// - Hs connected to dummy atoms will not be removed
// - Hs that are part of the definition of double bond Stereochemistry
// will not be removed
// - Hs that are not connected to anything else will not be removed
//
void removeHs(RWMol &mol, bool implicitOnly, bool updateExplicitCount,
bool sanitize) {
unsigned int currIdx = 0, origIdx = 0;
std::map<unsigned int, unsigned int> idxMap;
for (ROMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
++atIt) {
if ((*atIt)->getAtomicNum() == 1) continue;
(*atIt)->updatePropertyCache(false);
}
while (currIdx < mol.getNumAtoms()) {
Atom *atom = mol.getAtomWithIdx(currIdx);
idxMap[origIdx] = currIdx;
++origIdx;
if (atom->getAtomicNum() == 1) {
bool removeIt = false;
if (!atom->getDegree()) {
BOOST_LOG(rdWarningLog)
<< "WARNING: not removing hydrogen atom without neighbors"
<< std::endl;
} else {
if (atom->hasProp(common_properties::isImplicit)) {
removeIt = true;
if (atom->getDegree() == 1) {
// by default we remove implicit Hs, but not if they are
// attached to dummy atoms. This was Github #1439
ROMol::ADJ_ITER begin, end;
boost::tie(begin, end) = mol.getAtomNeighbors(atom);
if (mol.getAtomWithIdx(*begin)->getAtomicNum() < 1) {
removeIt = false;
BOOST_LOG(rdWarningLog) << "WARNING: not removing hydrogen atom "
"with only dummy atom neighbors"
<< std::endl;
}
}
} else if (!implicitOnly && !atom->getIsotope() &&
atom->getDegree() == 1) {
ROMol::ADJ_ITER begin, end;
boost::tie(begin, end) = mol.getAtomNeighbors(atom);
auto nbr = mol.getAtomWithIdx(*begin);
if (nbr->getAtomicNum() > 1) {
removeIt = true;
// we're connected to a non-dummy, non H atom. Check to see
// if the neighbor has a double bond and we're the only neighbor
// at this end. This was part of github #1810
if (nbr->getDegree() == 2) {
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomBonds(nbr))) {
const Bond *bnd = mol[nbri];
if (bnd->getBondType() == Bond::DOUBLE &&
(bnd->getStereo() > Bond::STEREOANY ||
mol.getBondBetweenAtoms(atom->getIdx(), nbr->getIdx())
->getBondDir() > Bond::NONE)) {
removeIt = false;
break;
}
}
}
}
}
}
if (removeIt) {
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
// part of the fix for github #2086:
CHECK_INVARIANT(beg != end, "H has no neighbors!");
// note the assumption that the H only has one neighbor... I
// feel no need to handle the case of hypervalent hydrogen!
// :-)
const Bond *bond = mol[*beg];
Atom *heavyAtom = bond->getOtherAtom(atom);
int heavyAtomNum = heavyAtom->getAtomicNum();
const INT_VECT &defaultVs =
PeriodicTable::getTable()->getValenceList(heavyAtomNum);
// we'll update the atom's explicit H count if we were told to
// *or* if the atom is chiral, in which case the H is needed
// in order to complete the coordination
// *or* if the atom has the noImplicit flag set:
if (updateExplicitCount || heavyAtom->getNoImplicit() ||
heavyAtom->getChiralTag() != Atom::CHI_UNSPECIFIED) {
heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs() + 1);
} else {
// this is a special case related to Issue 228 and the
// "disappearing Hydrogen" problem discussed in MolOps::adjustHs
//
// If we remove a hydrogen from an aromatic N or P, or if
// the heavy atom it is connected to is not in its default
// valence state, we need to be *sure* to increment the
// explicit count, even if the H itself isn't marked as explicit
if (((heavyAtomNum == 7 || heavyAtomNum == 15) &&
heavyAtom->getIsAromatic()) ||
(std::find(defaultVs.begin() + 1, defaultVs.end(),
heavyAtom->getTotalValence()) != defaultVs.end())) {
heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs() + 1);
}
}
// One other consequence of removing the H from the graph is
// that we may change the ordering of the bonds about a
// chiral center. This may change the chiral label at that
// atom. We deal with that by explicitly checking here:
if (heavyAtom->getChiralTag() != Atom::CHI_UNSPECIFIED) {
INT_LIST neighborIndices;
boost::tie(beg, end) = mol.getAtomBonds(heavyAtom);
while (beg != end) {
if (mol[*beg]->getIdx() != bond->getIdx()) {
neighborIndices.push_back(mol[*beg]->getIdx());
}
++beg;
}
neighborIndices.push_back(bond->getIdx());
int nSwaps = heavyAtom->getPerturbationOrder(neighborIndices);
// std::cerr << "H: "<<atom->getIdx()<<" hvy:
// "<<heavyAtom->getIdx()<<" swaps: " << nSwaps<<std::endl;
if (nSwaps % 2) {
heavyAtom->invertChirality();
}
}
// if it's a wavy bond, then we need to
// mark the beginning atom with the _UnknownStereo tag.
// so that we know later that something was affecting its
// stereochem
if (bond->getBondDir() == Bond::UNKNOWN &&
bond->getBeginAtomIdx() == heavyAtom->getIdx()) {
heavyAtom->setProp(common_properties::_UnknownStereo, 1);
} else if (bond->getBondDir() == Bond::ENDDOWNRIGHT ||
bond->getBondDir() == Bond::ENDUPRIGHT) {
// if the direction is set on this bond and the atom it's connected to
// has no other single bonds with directions set, then we need to set
// direction on one of the other neighbors in order to avoid double
// bond stereochemistry possibly being lost. This was github #754
bool foundADir = false;
Bond *oBond = nullptr;
boost::tie(beg, end) = mol.getAtomBonds(heavyAtom);
while (beg != end) {
if (mol[*beg]->getIdx() != bond->getIdx() &&
mol[*beg]->getBondType() == Bond::SINGLE) {
if (mol[*beg]->getBondDir() == Bond::NONE) {
oBond = mol[*beg];
} else {
foundADir = true;
}
}
++beg;
}
if (!foundADir && oBond != nullptr) {
bool flipIt = (oBond->getBeginAtom() == heavyAtom) &&
(bond->getBeginAtom() == heavyAtom);
if (flipIt) {
oBond->setBondDir(bond->getBondDir() == Bond::ENDDOWNRIGHT
? Bond::ENDUPRIGHT
: Bond::ENDDOWNRIGHT);
} else {
oBond->setBondDir(bond->getBondDir());
}
}
} else {
// if this atom is one of the stereoatoms for a double bond we need
// to switch the stereo atom on this end to be the other neighbor
// This was part of github #1810
adjustStereoAtomsIfRequired(mol, atom, heavyAtom);
}
mol.removeAtom(atom);
} else {
// only increment the atom idx if we don't remove the atom
currIdx++;
}
} else {
// only increment the atom idx if we don't remove the atom
currIdx++;
bool origNoImplicit;
if (atom->getPropIfPresent(common_properties::origNoImplicit,
origNoImplicit)) {
// we'll get in here if we haven't already processed the atom's implicit
// hydrogens. (this is protection for the case that removeHs() is
// called
// multiple times on a single molecule without intervening addHs()
// calls)
atom->setNoImplicit(origNoImplicit);
atom->clearProp(common_properties::origNoImplicit);
}
}
}
//
// If we didn't only remove implicit Hs, which are guaranteed to
// be the highest numbered atoms, we may have altered atom indices.
// This can screw up derived properties (such as ring members), so
// do some checks:
//
if (!implicitOnly) {
if (sanitize) {
sanitizeMol(mol);
}
}
};
ROMol *removeHs(const ROMol &mol, bool implicitOnly, bool updateExplicitCount,
bool sanitize) {
auto *res = new RWMol(mol);
try {
removeHs(*res, implicitOnly, updateExplicitCount, sanitize);
} catch (MolSanitizeException &se) {
delete res;
throw se;
}
return static_cast<ROMol *>(res);
}
namespace {
bool isQueryH(const Atom *atom) {
PRECONDITION(atom, "bogus atom");
if (atom->getAtomicNum() == 1) {
// the simple case: the atom is flagged as being an H and
// has no query
if (!atom->hasQuery() ||
(!atom->getQuery()->getNegation() &&
atom->getQuery()->getDescription() == "AtomAtomicNum")) {
return true;
}
}
if (atom->getDegree() != 1) {
// only degree 1
return false;
}
if (atom->hasQuery() && atom->getQuery()->getNegation()) {
// we will not merge negated queries
return false;
}
bool hasHQuery = false, hasOr = false;
if (atom->hasQuery()) {
if (atom->getQuery()->getDescription() == "AtomOr") {
hasOr = true;
}
std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack(
atom->getQuery()->beginChildren(), atom->getQuery()->endChildren());
// the logic gets too complicated if there's an OR in the children, so just
// punt on those (with a warning)
while (!(hasHQuery && hasOr) && childStack.size()) {
QueryAtom::QUERYATOM_QUERY::CHILD_TYPE query = childStack.front();
childStack.pop_front();
if (query->getDescription() == "AtomOr") {
hasOr = true;
} else if (query->getDescription() == "AtomAtomicNum") {
if (static_cast<ATOM_EQUALS_QUERY *>(query.get())->getVal() == 1 &&
!query->getNegation()) {
hasHQuery = true;
}
} else {
QueryAtom::QUERYATOM_QUERY::CHILD_VECT_CI child1;
for (child1 = query->beginChildren(); child1 != query->endChildren();
++child1) {
childStack.push_back(*child1);
}
}
}
// std::cerr<<" !!!1 "<<atom->getIdx()<<" "<<hasHQuery<<"
// "<<hasOr<<std::endl;
if (hasHQuery && hasOr) {
BOOST_LOG(rdWarningLog) << "WARNING: merging explicit H queries involved "
"in ORs is not supported. This query will not "
"be merged"
<< std::endl;
return false;
}
}
return hasHQuery;
}
} // namespace
//
// This routine removes explicit hydrogens (and bonds to them) from
// the molecular graph and adds them as queries to the heavy atoms
// to which they are bound. If the heavy atoms (or atom queries)
// already have hydrogen-count queries, they will be updated.
//
// NOTE:
// - Hydrogens which aren't connected to a heavy atom will not be
// removed. This prevents molecules like "[H][H]" from having
// all atoms removed.
//
// - By default all hydrogens are removed, however if
// merge_unmapped_only is true, any hydrogen participating
// in an atom map will be retained
void mergeQueryHs(RWMol &mol, bool mergeUnmappedOnly) {
std::vector<unsigned int> atomsToRemove;
boost::dynamic_bitset<> hatoms(mol.getNumAtoms());
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
hatoms[i] = isQueryH(mol.getAtomWithIdx(i));
}
unsigned int currIdx = 0, stopIdx = mol.getNumAtoms();
while (currIdx < stopIdx) {
Atom *atom = mol.getAtomWithIdx(currIdx);
if (!hatoms[currIdx]) {
unsigned int numHsToRemove = 0;
ROMol::ADJ_ITER begin, end;
boost::tie(begin, end) = mol.getAtomNeighbors(atom);
while (begin != end) {
if (hatoms[*begin]) {
Atom &bgn = *mol.getAtomWithIdx(*begin);
if (!mergeUnmappedOnly ||
!bgn.hasProp(common_properties::molAtomMapNumber)) {
atomsToRemove.push_back(rdcast<unsigned int>(*begin));
++numHsToRemove;
}
}
++begin;
}
if (numHsToRemove) {
//
// We have H neighbors:
// If we have no H query already:
// - add a generic H query
// else:
// - do nothing
//
// Examples:
// C[H] -> [C;!H0]
// [C;H1][H] -> [C;H1]
// [C;H2][H] -> [C;H2]
//
// FIX: this is going to behave oddly in the case of a contradictory
// SMARTS like: [C;H0][H], where it will give the equivalent of:
// [C;H0] I think this is actually correct, but I can be persuaded
// otherwise.
//
// First we'll search for an H query:
bool hasHQuery = false;
if (!atom->hasQuery()) {
// it wasn't a query atom, we need to replace it so that we can add a
// query:
ATOM_EQUALS_QUERY *tmp = makeAtomNumQuery(atom->getAtomicNum());
auto *newAt = new QueryAtom;
newAt->setQuery(tmp);
newAt->updateProps(*atom);
mol.replaceAtom(atom->getIdx(), newAt);
delete newAt;
atom = mol.getAtomWithIdx(currIdx);
}
if (!hasHQuery) {
for (unsigned int i = 0; i < numHsToRemove; ++i) {
ATOM_EQUALS_QUERY *tmp = makeAtomHCountQuery(i);
tmp->setNegation(true);
atom->expandQuery(tmp);
}
}
} // end of numHsToRemove test
// recurse if needed (was github isusue 544)
if (atom->hasQuery()) {
// std::cerr<<" q: "<<atom->getQuery()->getDescription()<<std::endl;
if (atom->getQuery()->getDescription() == "RecursiveStructure") {
RWMol *rqm = static_cast<RWMol *>(const_cast<ROMol *>(
static_cast<RecursiveStructureQuery *>(atom->getQuery())
->getQueryMol()));
mergeQueryHs(*rqm, mergeUnmappedOnly);
}
// FIX: shouldn't be repeating this code here
std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack(
atom->getQuery()->beginChildren(), atom->getQuery()->endChildren());
while (childStack.size()) {
QueryAtom::QUERYATOM_QUERY::CHILD_TYPE qry = childStack.front();
childStack.pop_front();
// std::cerr<<" child: "<<qry->getDescription()<<std::endl;
if (qry->getDescription() == "RecursiveStructure") {
// std::cerr<<" recurse"<<std::endl;
RWMol *rqm = static_cast<RWMol *>(const_cast<ROMol *>(
static_cast<RecursiveStructureQuery *>(qry.get())
->getQueryMol()));
mergeQueryHs(*rqm, mergeUnmappedOnly);
// std::cerr<<" back"<<std::endl;
} else if (qry->beginChildren() != qry->endChildren()) {
childStack.insert(childStack.end(), qry->beginChildren(),
qry->endChildren());
}
}
} // end of recursion loop
}
++currIdx;
}
std::sort(atomsToRemove.begin(), atomsToRemove.end());
for (std::vector<unsigned int>::const_reverse_iterator aiter =
atomsToRemove.rbegin();
aiter != atomsToRemove.rend(); ++aiter) {
Atom *atom = mol.getAtomWithIdx(*aiter);
mol.removeAtom(atom);
}
};
ROMol *mergeQueryHs(const ROMol &mol, bool mergeUnmappedOnly) {
auto *res = new RWMol(mol);
mergeQueryHs(*res, mergeUnmappedOnly);
return static_cast<ROMol *>(res);
};
}; // end of namespace MolOps
}; // end of namespace RDKit
|