File: Aromaticity.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (901 lines) | stat: -rw-r--r-- 28,882 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
//
//  Copyright (C) 2003-2017 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/QueryOps.h>
#include <GraphMol/Rings.h>
#include <RDGeneral/types.h>
#include <boost/dynamic_bitset.hpp>
#include <set>

// introduced for the sake of efficiency
// this is the maximum ring size that will be considered
// as a candiate for fused-ring aromaticity. This is picked to
// be a bit bigger than the outer ring in a porphyrin
// This came up while fixing sf.net issue249
const unsigned int maxFusedAromaticRingSize = 24;

/****************************************************************
Here are some molecule that have trouble us aromaticity wise

1. We get 2 aromatic rings for this molecule, but daylight says none. Also
   if we replace [O+] with the N daylight says we have two aromatic rings
   [O-][N+]1=CC2=CC=C[O+]2[Cu]13[O+]4C=CC=C4C=[N+]3[O-]

2. We the fused ring system with all the rings in it is considered aroamtic by
our code.
   This is because we count electrons from burried atoms as well when
   we are dealing with fused rings

3. Here's a weird fused ring case, Pattern NAN, A overall
   O=C3C2=CC1=CC=COC1=CC2=CC=C3
 ************************************************************/
namespace RingUtils {
using namespace RDKit;

void pickFusedRings(int curr, const INT_INT_VECT_MAP &neighMap, INT_VECT &res,
                    boost::dynamic_bitset<> &done, int depth) {
  auto pos = neighMap.find(curr);
  PRECONDITION(pos != neighMap.end(), "bad argument");
  done[curr] = 1;
  res.push_back(curr);

  const INT_VECT &neighs = pos->second;
#if 0
    std::cerr<<"depth: "<<depth<<" ring: "<<curr<<" size: "<<res.size()<<" neighs: "<<neighs.size()<<std::endl;
    std::cerr<<"   ";
    std::copy(neighs.begin(),neighs.end(),std::ostream_iterator<int>(std::cerr," "));
    std::cerr<<"\n";
#endif
  for (int neigh : neighs) {
    if (!done[neigh]) {
      pickFusedRings(neigh, neighMap, res, done, depth + 1);
    }
  }
}

bool checkFused(const INT_VECT &rids, INT_INT_VECT_MAP &ringNeighs) {
  INT_INT_VECT_MAP_CI nci;
  int nrings = rdcast<int>(ringNeighs.size());
  boost::dynamic_bitset<> done(nrings);
  int rid;
  INT_VECT fused;

  // mark all rings in the system other than those in rids as done
  for (nci = ringNeighs.begin(); nci != ringNeighs.end(); nci++) {
    rid = (*nci).first;
    if (std::find(rids.begin(), rids.end(), rid) == rids.end()) {
      done[rid] = 1;
    }
  }

  // then pick a fused system from the remaining (i.e. rids)
  // If the rings in rids are fused we should get back all of them
  // in fused
  // if we get a smaller number in fused then rids are not fused
  pickFusedRings(rids.front(), ringNeighs, fused, done);

  CHECK_INVARIANT(fused.size() <= rids.size(), "");
  return (fused.size() == rids.size());
}

void makeRingNeighborMap(const VECT_INT_VECT &brings,
                         INT_INT_VECT_MAP &neighMap, unsigned int maxSize,
                         unsigned int maxOverlapSize) {
  int nrings = rdcast<int>(brings.size());
  int i, j;
  INT_VECT ring1;
  for (i = 0; i < nrings; i++) {
    INT_VECT neighs;
    neighMap[i] = neighs;
  }

  for (i = 0; i < nrings; i++) {
    if (maxSize && brings[i].size() > maxSize) continue;
    ring1 = brings[i];
    for (j = i + 1; j < nrings; j++) {
      if (maxSize && brings[j].size() > maxSize) continue;
      INT_VECT inter;
      Intersect(ring1, brings[j], inter);
      if (inter.size() > 0 &&
          (!maxOverlapSize || inter.size() <= maxOverlapSize)) {
        neighMap[i].push_back(j);
        neighMap[j].push_back(i);
      }
    }
  }
#if 0
    for (i = 0; i < nrings; i++) {
      std::cerr<<"**************\n    "<<i<<"\n*************\n";
      std::copy(neighMap[i].begin(),neighMap[i].end(),std::ostream_iterator<int>(std::cerr," "));
      std::cerr<<"\n";
    }
#endif
}

}  // end of namespace RingUtils

// local utility namespace
namespace {
using namespace RDKit;

typedef enum {
  VacantElectronDonorType,
  OneElectronDonorType,
  TwoElectronDonorType,
  OneOrTwoElectronDonorType,
  AnyElectronDonorType,
  NoElectronDonorType
} ElectronDonorType;  // used in setting aromaticity
typedef std::vector<ElectronDonorType> VECT_EDON_TYPE;
typedef VECT_EDON_TYPE::iterator VECT_EDON_TYPE_I;
typedef VECT_EDON_TYPE::const_iterator VECT_EDON_TYPE_CI;

/******************************************************************************
 * SUMMARY:
 *  Apply Huckel rule to the specified ring and mark the bonds and atoms in the
 *  ring accordingly.
 *
 * ARGUMENTS:
 *  mol - molecule of interest
 *  ring - list of atoms that form the simple ring
 *  edon - list of electron donor type of the atoms in the molecule
 *
 * RETURN :
 *  none
 *
 * ASSUMPTIONS:
 *  the ring has to a simple ring and the electron donor type of each atom
 *  in the ring have been computed
 ******************************************************************************/
static bool applyHuckel(ROMol &mol, const INT_VECT &ring,
                        const VECT_EDON_TYPE &edon);

static void applyHuckelToFused(
    ROMol &mol,                   // molecule of interets
    const VECT_INT_VECT &srings,  // list of all ring as atom IDS
    const VECT_INT_VECT &brings,  // list of all rings as bond ids
    const INT_VECT &fused,       // list of ring ids in the current fused system
    const VECT_EDON_TYPE &edon,  // eletron donar state for each atom
    INT_INT_VECT_MAP &ringNeighs,
    int &narom,  // number of aromatic ring so far
    unsigned int maxNumFusedRings, unsigned int minRingSize);

void markAtomsBondsArom(ROMol &mol, const VECT_INT_VECT &srings,
                        const VECT_INT_VECT &brings, const INT_VECT &ringIds,
                        std::set<unsigned int> &doneAtms) {
  INT_VECT aring, bring;
  INT_VECT_CI ri, ai, bi;

  // first mark the atoms in the rings
  for (ri = ringIds.begin(); ri != ringIds.end(); ri++) {
    aring = srings[*ri];

    // first mark the atoms in the ring
    // std::cerr << "aring:";
    for (ai = aring.begin(); ai != aring.end(); ai++) {
      // std::cerr << " " << *ai;
      mol.getAtomWithIdx(*ai)->setIsAromatic(true);
      doneAtms.insert(*ai);
    }
    // std::cerr << std::endl;
  }

  // mark the bonds
  // here we want to be more careful. We don't want to mark the fusing bonds
  // as aromatic - only the outside bonds in a fused system are marked aromatic.
  // - loop through the rings and count the number of times each bond appears in
  //   all the fused rings.
  // - bonds that appeard only once are marked aromatic
  INT_MAP_INT bndCntr;
  INT_MAP_INT_I bci;

  for (ri = ringIds.begin(); ri != ringIds.end(); ri++) {
    bring = brings[*ri];
    for (bi = bring.begin(); bi != bring.end(); bi++) {
      if (bndCntr.find(*bi) == bndCntr.end()) {
        bndCntr[*bi] = 1;
      } else {
        bndCntr[*bi] += 1;
      }
    }
  }
  // now mark bonds that have a count of 1 to be aromatic;
  // std::cerr << "bring:";
  for (bci = bndCntr.begin(); bci != bndCntr.end(); bci++) {
    // std::cerr << " " << bci->first << "(" << bci->second << ")";
    if ((*bci).second == 1) {
      Bond *bond = mol.getBondWithIdx(bci->first);
      bond->setIsAromatic(true);
      switch (bond->getBondType()) {
        case Bond::SINGLE:
        case Bond::DOUBLE:
          bond->setBondType(Bond::AROMATIC);
          break;
        default:
          break;
      }
    }
  }
  // std::cerr << std::endl;
}

void getMinMaxAtomElecs(ElectronDonorType dtype, int &atlw, int &atup) {
  switch (dtype) {
    case AnyElectronDonorType:
      atlw = 0;
      atup = 2;
      break;
    case OneOrTwoElectronDonorType:
      atlw = 1;
      atup = 2;
      break;
    case OneElectronDonorType:
      atlw = atup = 1;
      break;
    case TwoElectronDonorType:
      atlw = atup = 2;
      break;
    case NoElectronDonorType:
    case VacantElectronDonorType:
    default:
      atlw = atup = 0;
      break;
  }
}

bool incidentNonCyclicMultipleBond(const Atom *at, int &who) {
  PRECONDITION(at, "bad atom");
  // check if "at" has an non-cyclic multiple bond on it
  // if yes check which atom this bond goes to
  // and record the atomID in who
  const ROMol &mol = at->getOwningMol();
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = mol.getAtomBonds(at);
  while (beg != end) {
    if (!mol.getRingInfo()->numBondRings(mol[*beg]->getIdx())) {
      if (mol[*beg]->getValenceContrib(at) >= 2.0) {
        who = mol[*beg]->getOtherAtomIdx(at->getIdx());
        return true;
      }
    }
    ++beg;
  }
  return false;
}

bool incidentCyclicMultipleBond(const Atom *at) {
  PRECONDITION(at, "bad atom");
  const ROMol &mol = at->getOwningMol();
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = mol.getAtomBonds(at);
  while (beg != end) {
    if (mol.getRingInfo()->numBondRings(mol[*beg]->getIdx())) {
      if (mol[*beg]->getValenceContrib(at) >= 2.0) {
        return true;
      }
    }
    beg++;
  }
  return false;
}

bool incidentMultipleBond(const Atom *at) {
  PRECONDITION(at, "bad atom");
  int deg = at->getDegree() + at->getNumExplicitHs();
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = at->getOwningMol().getAtomBonds(at);
  while (beg != end) {
    Bond *bond = at->getOwningMol()[*beg];
    if (!std::lround(bond->getValenceContrib(at))) --deg;
    ++beg;
  }
  return at->getExplicitValence() != static_cast<int>(deg);
}

bool applyHuckel(ROMol &mol, const INT_VECT &ring, const VECT_EDON_TYPE &edon,
                 unsigned int minRingSize) {
  RDUNUSED_PARAM(mol);
  if (ring.size() < minRingSize) return false;
  int atlw, atup, rlw, rup, rie;
  bool aromatic = false;
  rlw = 0;
  rup = 0;
  for (auto idx : ring) {
    ElectronDonorType edonType = edon[idx];
    getMinMaxAtomElecs(edonType, atlw, atup);
    rlw += atlw;
    rup += atup;
  }

  if (rup >= 6) {
    for (rie = rlw; rie <= rup; rie++) {
      if ((rie - 2) % 4 == 0) {
        aromatic = true;
        break;
      }
    }
  } else if (rup == 2) {
    aromatic = true;
  }
#if 0
    std::cerr <<" ring: ";
    std::copy(ring.begin(),ring.end(),std::ostream_iterator<int>(std::cerr," "));
    std::cerr <<" rlw: "<<rlw<<" rup: "<<rup<<" aromatic? "<<aromatic<<std::endl;
#endif
  return aromatic;
}

void applyHuckelToFused(
    ROMol &mol,                   // molecule of interets
    const VECT_INT_VECT &srings,  // list of all ring as atom IDS
    const VECT_INT_VECT &brings,  // list of all rings as bond ids
    const INT_VECT &fused,       // list of ring ids in the current fused system
    const VECT_EDON_TYPE &edon,  // eletron donor state for each atom
    INT_INT_VECT_MAP &ringNeighs,  // list of neighbors for eac candidate ring
    int &narom,                    // number of aromatic ring so far
    unsigned int maxNumFusedRings, unsigned int minRingSize = 0) {
  // this function check huckel rule on a fused system it starts
  // with the individual rings in the system and then proceeds to
  // check for larger system i.e. if we have a 3 ring fused system,
  // huckel rule checked first on all teh 1 ring subsystems then 2
  // rung subsystems etc.

  INT_VECT aromRings;
  aromRings.resize(0);
  unsigned int nrings = rdcast<unsigned int>(fused.size());
  INT_VECT curRs;
  INT_VECT_CI mri;
  curRs.push_back(fused.front());
  int pos;
  unsigned int i, curSize = 0;
  INT_VECT comb;
  pos = -1;
  INT_VECT unionAtms;
  Union(srings, unionAtms);
  unsigned int nAtms = rdcast<unsigned int>(unionAtms.size());
  std::set<unsigned int> doneAtoms;
  while (1) {
    if (pos == -1) {
      curSize++;
      // check is we are done with all the atoms in the fused
      // system, if so quit. This is a fix for Issue252 REVIEW: is
      // this check sufficient or should we add an additional
      // contraint on the the number of combinations of rings in a
      // fused system that we will try. The number of combinations
      // can obviously be quite large when the number of rings in
      // the fused system is large
      if ((doneAtoms.size() == nAtms) ||
          (curSize > std::min(nrings, maxNumFusedRings))) {
        break;
      }
      comb.resize(curSize);
      pos = 0;
      for (i = 0; i < curSize; i++) {
        comb[i] = i;
      }
    } else {
      pos = nextCombination(comb, nrings);
    }

    if (pos == -1) {
      continue;
    }

    curRs.resize(0);
    for (i = 0; i < comb.size(); i++) {
      curRs.push_back(fused[comb[i]]);
    }

    // check if the picked subsystem is fused
    if (ringNeighs.size() && !RingUtils::checkFused(curRs, ringNeighs)) {
      continue;
    }

    // check aromaticity on the current fused system
    INT_VECT exclude;
    for (i = 0; i < srings.size(); i++) {
      if (std::find(curRs.begin(), curRs.end(), static_cast<int>(i)) ==
          curRs.end()) {
        exclude.push_back(i);
      }
    }
    INT_VECT unon;
    Union(srings, unon, &exclude);

    if (applyHuckel(mol, unon, edon, minRingSize)) {
      // mark the atoms and bonds in these rings to be aromatic
      markAtomsBondsArom(mol, srings, brings, curRs, doneAtoms);

      // add the ring IDs to the aromatic rings found so far
      // avoid duplicates
      for (mri = curRs.begin(); mri != curRs.end(); mri++) {
        if (std::find(aromRings.begin(), aromRings.end(), (*mri)) ==
            aromRings.end()) {
          aromRings.push_back(*mri);
        }
      }
    }  // end check huckel rule
  }    // end while(1)
  narom += rdcast<int>(aromRings.size());
}

bool isAtomCandForArom(const Atom *at, const ElectronDonorType edon,
                       bool allowThirdRow = true, bool allowTripleBonds = true,
                       bool allowHigherExceptions = true, bool onlyCorN = false,
                       bool allowExocyclicMultipleBonds = true) {
  PRECONDITION(at, "bad atom");
  if (onlyCorN && at->getAtomicNum() != 6 && at->getAtomicNum() != 7)
    return false;
  if (!allowThirdRow && at->getAtomicNum() > 10) return false;

  // limit aromaticity to:
  //   - the first two rows of the periodic table
  //   - Se and Te
  if (at->getAtomicNum() > 18 &&
      (!allowHigherExceptions ||
       (at->getAtomicNum() != 34 && at->getAtomicNum() != 52))) {
    return false;
  }
  switch (edon) {
    case VacantElectronDonorType:
    case OneElectronDonorType:
    case TwoElectronDonorType:
    case OneOrTwoElectronDonorType:
    case AnyElectronDonorType:
      break;
    default:
      return (false);
  }

  // atoms that aren't in their default valence state also get shut out
  int defVal = PeriodicTable::getTable()->getDefaultValence(at->getAtomicNum());
  if (defVal > 0 && rdcast<int>(at->getTotalValence()) >
                        (PeriodicTable::getTable()->getDefaultValence(
                            at->getAtomicNum() - at->getFormalCharge()))) {
    return false;
  }

  // heteroatoms or charged carbons with radicals also disqualify us from being
  // considered. This was github issue 432 (heteroatoms) and 1936 (charged
  // carbons)
  if (at->getNumRadicalElectrons() &&
      (at->getAtomicNum() != 6 || at->getFormalCharge())) {
    return false;
  }

  // We are going to explicitly disallow atoms that have more
  // than one double or triple bond. This is to handle
  // the situation:
  //   C1=C=NC=N1 (sf.net bug 1934360)
  int nUnsaturations = at->getExplicitValence() - at->getDegree();
  if (nUnsaturations > 1) {
    unsigned int nMult = 0;
    const ROMol &mol = at->getOwningMol();
    ROMol::OEDGE_ITER beg, end;
    boost::tie(beg, end) = mol.getAtomBonds(at);
    while (beg != end) {
      switch (mol[*beg]->getBondType()) {
        case Bond::SINGLE:
        case Bond::AROMATIC:
          break;
        case Bond::DOUBLE:
          ++nMult;
          break;
        case Bond::TRIPLE:
          if (!allowTripleBonds) return false;
          ++nMult;
          break;
        default:
          // hopefully we had enough sense that we don't even
          // get here with these bonds... If we do land here,
          // just bail... I have no good answer for them.
          break;
      }
      if (nMult > 1) break;
      ++beg;
    }
    if (nMult > 1) return (false);
  }

  if (!allowExocyclicMultipleBonds) {
    const ROMol &mol = at->getOwningMol();
    ROMol::OEDGE_ITER beg, end;
    boost::tie(beg, end) = mol.getAtomBonds(at);
    while (beg != end) {
      const Bond *bnd = mol[*beg];
      if ((bnd->getBondType() == Bond::DOUBLE ||
           bnd->getBondType() == Bond::TRIPLE) &&
          !queryIsBondInRing(bnd))
        return false;
      ++beg;
    }
  }

  return (true);
}

ElectronDonorType getAtomDonorTypeArom(
    const Atom *at, bool exocyclicBondsStealElectrons = true) {
  PRECONDITION(at, "bad atom");
  if (at->getAtomicNum() == 0) {
    // dummies can be anything:
    return AnyElectronDonorType;
  }

  ElectronDonorType res = NoElectronDonorType;
  int nelec = MolOps::countAtomElec(at);
  int who = -1;
  const ROMol &mol = at->getOwningMol();
  if (nelec < 0) {
    res = NoElectronDonorType;
  } else if (nelec == 0) {
    if (incidentNonCyclicMultipleBond(at, who)) {
      // This is borderline:  no electron to spare but may have an empty
      // p-orbital
      // Not sure if this should return vacantElectronDonorType
      // FIX: explicitly doing this as a note for potential problems
      //
      res = VacantElectronDonorType;
    } else if (incidentCyclicMultipleBond(at)) {
      // no electron but has one in a in cycle multiple bond
      res = OneElectronDonorType;
    } else {
      // no multiple bonds no electrons
      res = NoElectronDonorType;
    }
  } else if (nelec == 1) {
    if (incidentNonCyclicMultipleBond(at, who)) {
      // the only available electron is going to be from the
      // external multiple bond this electron will not be available
      // for aromaticity if this atom is bonded to a more electro
      // negative atom
      const Atom *at2 = mol.getAtomWithIdx(who);
      if (exocyclicBondsStealElectrons &&
          PeriodicTable::getTable()->moreElectroNegative(at2->getAtomicNum(),
                                                         at->getAtomicNum())) {
        res = VacantElectronDonorType;
      } else {
        res = OneElectronDonorType;
      }
    } else {
      // require that the atom have at least one multiple bond
      if (incidentMultipleBond(at)) {
        res = OneElectronDonorType;
      }
      // account for the tropylium and cyclopropenyl cation cases
      else if (at->getFormalCharge() == 1) {
        res = VacantElectronDonorType;
      }
    }
  } else {
    if (incidentNonCyclicMultipleBond(at, who)) {
      // for cases with more than one electron :
      // if there is an incident multiple bond with an element that
      // is more electronegative than the this atom, count one less
      // electron
      const Atom *at2 = mol.getAtomWithIdx(who);
      if (exocyclicBondsStealElectrons &&
          PeriodicTable::getTable()->moreElectroNegative(at2->getAtomicNum(),
                                                         at->getAtomicNum())) {
        nelec--;
      }
    }
    if (nelec % 2 == 1) {
      res = OneElectronDonorType;
    } else {
      res = TwoElectronDonorType;
    }
  }
  return (res);
}
}  // namespace

namespace RDKit {
namespace MolOps {
int countAtomElec(const Atom *at) {
  PRECONDITION(at, "bad atom");

  // default valence :
  int dv = PeriodicTable::getTable()->getDefaultValence(at->getAtomicNum());
  if (dv <= 1) {
    // univalent elements can't be either aromatic or conjugated
    return -1;
  }

  // total atom degree:
  int degree = at->getDegree() + at->getTotalNumHs();

  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = at->getOwningMol().getAtomBonds(at);
  while (beg != end) {
    Bond *bond = at->getOwningMol()[*beg];
    // don't count bonds that aren't actually contributing to the valence here:
    if (!std::lround(bond->getValenceContrib(at))) {
      --degree;
    }
    ++beg;
  }

  // if we are more than 3 coordinated we should not be aromatic
  if (degree > 3) {
    return -1;
  }

  // number of lone pair electrons = (outer shell elecs) - (default valence)
  int nlp;
  nlp = PeriodicTable::getTable()->getNouterElecs(at->getAtomicNum()) - dv;

  // subtract the charge to get the true number of lone pair electrons:
  nlp = std::max(nlp - at->getFormalCharge(), 0);

  int nRadicals = at->getNumRadicalElectrons();

  // num electrons available for donation into the pi system:
  int res = (dv - degree) + nlp - nRadicals;

  if (res > 1) {
    // if we have an incident bond with order higher than 2,
    // (e.g. triple or higher), we only want to return 1 electron
    // we detect this using the total unsaturation, because we
    // know that there aren't multiple unsaturations (detected
    // above in isAtomCandForArom())
    int nUnsaturations = at->getExplicitValence() - at->getDegree();
    if (nUnsaturations > 1) {
      res = 1;
    }
  }

  return res;
}

namespace {
int mdlAromaticityHelper(RWMol &mol, const VECT_INT_VECT &srings) {
  int narom = 0;
  // loop over all the atoms in the rings that can be candidates
  // for aromaticity
  // Atoms are candidates if
  //   - it is part of ring
  //   - has one or more electron to donate or has empty p-orbitals
  int natoms = mol.getNumAtoms();
  boost::dynamic_bitset<> acands(natoms);
  boost::dynamic_bitset<> aseen(natoms);
  VECT_EDON_TYPE edon(natoms);

  VECT_INT_VECT cRings;  // holder for rings that are candidates for aromaticity
  for (auto &sring : srings) {
    bool allAromatic = true;
    bool allDummy = true;
    for (auto firstIdx : sring) {
      Atom *at = mol.getAtomWithIdx(firstIdx);

      if (allDummy && at->getAtomicNum() != 0) {
        allDummy = false;
      }

      if (aseen[firstIdx]) {
        if (!acands[firstIdx]) allAromatic = false;
        continue;
      }
      aseen[firstIdx] = 1;

      // now that the atom is part of ring check if it can donate
      // electron or has empty orbitals. Record the donor type
      // information in 'edon' - we will need it when we get to
      // the Huckel rule later
      edon[firstIdx] = getAtomDonorTypeArom(at, false);
      // we only accept one electron donors?
      if (edon[firstIdx] != OneElectronDonorType) {
        allAromatic = false;
        continue;
      }
      const bool allowThirdRow = false;
      const bool allowTripleBonds = false;
      const bool allowHigherExceptions = false;
      const bool onlyCorN = true;
      const bool allowExocyclicMultipleBonds = false;
      acands[firstIdx] = isAtomCandForArom(
          at, edon[firstIdx], allowThirdRow, allowTripleBonds,
          allowHigherExceptions, onlyCorN, allowExocyclicMultipleBonds);
      if (!acands[firstIdx]) allAromatic = false;
    }
    if (allAromatic && !allDummy) {
      cRings.push_back(sring);
    }
  }

  // first convert all rings to bonds ids
  VECT_INT_VECT brings;
  RingUtils::convertToBonds(cRings, brings, mol);

  // make the neighbor map for the rings
  // i.e. a ring is a neighbor a another candidate ring if
  // shares at least one bond
  // useful to figure out fused systems
  INT_INT_VECT_MAP neighMap;
  RingUtils::makeRingNeighborMap(brings, neighMap, maxFusedAromaticRingSize, 1);

  // now loop over all the candidate rings and check the
  // huckel rule - of course paying attention to fused systems.
  INT_VECT doneRs;
  int curr = 0;
  int cnrs = rdcast<int>(cRings.size());
  boost::dynamic_bitset<> fusDone(cnrs);
  INT_VECT fused;
  while (curr < cnrs) {
    fused.resize(0);
    RingUtils::pickFusedRings(curr, neighMap, fused, fusDone);
    const unsigned int maxFused = 6;
    const unsigned int minRingSize = 6;
    applyHuckelToFused(mol, cRings, brings, fused, edon, neighMap, narom,
                       maxFused, minRingSize);

    int rix;
    for (rix = 0; rix < cnrs; rix++) {
      if (!fusDone[rix]) {
        curr = rix;
        break;
      }
    }
    if (rix == cnrs) {
      break;
    }
  }

  mol.setProp(common_properties::numArom, narom, true);

  return narom;
}

// use minRingSize=0 or maxRingSize=0 to ignore these constraints
int aromaticityHelper(RWMol &mol, const VECT_INT_VECT &srings,
                      unsigned int minRingSize, unsigned int maxRingSize,
                      bool includeFused) {
  int narom = 0;
  // loop over all the atoms in the rings that can be candidates
  // for aromaticity
  // Atoms are candidates if
  //   - it is part of ring
  //   - has one or more electron to donate or has empty p-orbitals
  int natoms = mol.getNumAtoms();
  boost::dynamic_bitset<> acands(natoms);
  boost::dynamic_bitset<> aseen(natoms);
  VECT_EDON_TYPE edon(natoms);

  VECT_INT_VECT cRings;  // holder for rings that are candidates for aromaticity
  for (auto &sring : srings) {
    size_t ringSz = sring.size();
    // test ring size:
    if ((minRingSize && ringSz < minRingSize) ||
        (maxRingSize && ringSz > maxRingSize))
      continue;

    bool allAromatic = true;
    bool allDummy = true;
    for (auto firstIdx : sring) {
      Atom *at = mol.getAtomWithIdx(firstIdx);

      if (allDummy && at->getAtomicNum() != 0) {
        allDummy = false;
      }

      if (aseen[firstIdx]) {
        if (!acands[firstIdx]) allAromatic = false;
        continue;
      }
      aseen[firstIdx] = 1;

      // now that the atom is part of ring check if it can donate
      // electron or has empty orbitals. Record the donor type
      // information in 'edon' - we will need it when we get to
      // the Huckel rule later
      edon[firstIdx] = getAtomDonorTypeArom(at);
      acands[firstIdx] = isAtomCandForArom(at, edon[firstIdx]);
      if (!acands[firstIdx]) allAromatic = false;
    }
    if (allAromatic && !allDummy) {
      cRings.push_back(sring);
    }
  }

  // first convert all rings to bonds ids
  VECT_INT_VECT brings;
  RingUtils::convertToBonds(cRings, brings, mol);

  if (!includeFused) {
    // now loop over all the candidate rings and check the
    // huckel rule - skipping fused systems
    INT_INT_VECT_MAP neighMap;
    for (size_t ri = 0; ri < cRings.size(); ++ri) {
      INT_VECT fused;
      fused.push_back(ri);
      const unsigned int maxFused = 6;
      const unsigned int minRingSize = 0;
      applyHuckelToFused(mol, cRings, brings, fused, edon, neighMap, narom,
                         maxFused, minRingSize);
    }
  } else {
    // make the neighbor map for the rings
    // i.e. a ring is a neighbor a another candidate ring if
    // shares at least one bond
    // useful to figure out fused systems
    INT_INT_VECT_MAP neighMap;
    RingUtils::makeRingNeighborMap(brings, neighMap, maxFusedAromaticRingSize, 1);

    // now loop over all the candidate rings and check the
    // huckel rule - of course paying attention to fused systems.
    INT_VECT doneRs;
    int curr = 0;
    int cnrs = rdcast<int>(cRings.size());
    boost::dynamic_bitset<> fusDone(cnrs);
    INT_VECT fused;
    while (curr < cnrs) {
      fused.resize(0);
      RingUtils::pickFusedRings(curr, neighMap, fused, fusDone);
      applyHuckelToFused(mol, cRings, brings, fused, edon, neighMap, narom, 6);

      int rix;
      for (rix = 0; rix < cnrs; rix++) {
        if (!fusDone[rix]) {
          curr = rix;
          break;
        }
      }
      if (rix == cnrs) {
        break;
      }
    }
  }

  mol.setProp(common_properties::numArom, narom, true);

  return narom;
}

}  // end of anonymous namespace

int setAromaticity(RWMol &mol, AromaticityModel model, int (*func)(RWMol &)) {
  // This function used to check if the input molecule came
  // with aromaticity information, assumed it is correct and
  // did not touch it. Now it ignores that information entirely.

  // first find the all the simple rings in the molecule
  VECT_INT_VECT srings;
  if (mol.getRingInfo()->isInitialized()) {
    srings = mol.getRingInfo()->atomRings();
  } else {
    MolOps::symmetrizeSSSR(mol, srings);
  }

  int res;
  switch (model) {
    case AROMATICITY_DEFAULT:
    case AROMATICITY_RDKIT:
      res = aromaticityHelper(mol, srings, 0, 0, true);
      break;
    case AROMATICITY_SIMPLE:
      res = aromaticityHelper(mol, srings, 5, 6, false);
      break;
    case AROMATICITY_MDL:
      res = mdlAromaticityHelper(mol, srings);
      break;
    case AROMATICITY_CUSTOM:
      PRECONDITION(
          func,
          "function must be set when aromaticity model is AROMATICITY_CUSTOM");
      res = func(mol);
      break;
    default:
      throw ValueErrorException("Bad AromaticityModel");
  }
  return res;
}

};  // end of namespace MolOps
};  // end of namespace RDKit