File: Atom.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (619 lines) | stat: -rw-r--r-- 20,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// $Id$
//
//  Copyright (C) 2001-2010 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <math.h>

#include "ROMol.h"
#include "Atom.h"
#include "PeriodicTable.h"
#include "SanitException.h"
#include "QueryOps.h"
#include "MonomerInfo.h"

#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/types.h>
#include <RDGeneral/Dict.h>

namespace RDKit {
namespace {
// Determine whether or not a molecule is to the left of Carbon
bool isEarlyAtom(int atomicNum) {
  return (4 - PeriodicTable::getTable()->getNouterElecs(atomicNum)) > 0;
}
}
Atom::Atom() : RDProps() {
  d_atomicNum = 0;
  initAtom();
}

Atom::Atom(unsigned int num) : RDProps() {
  d_atomicNum = num;
  initAtom();
};

Atom::Atom(const std::string &what) : RDProps() {
  d_atomicNum = PeriodicTable::getTable()->getAtomicNumber(what);
  initAtom();
};

Atom::Atom(const Atom &other) : RDProps(other) {
  // NOTE: we do *not* copy ownership!
  d_atomicNum = other.d_atomicNum;
  dp_mol = nullptr;
  d_index = 0;
  d_formalCharge = other.d_formalCharge;
  df_noImplicit = other.df_noImplicit;
  df_isAromatic = other.df_isAromatic;
  d_numExplicitHs = other.d_numExplicitHs;
  d_numRadicalElectrons = other.d_numRadicalElectrons;
  d_isotope = other.d_isotope;
  // d_pos = other.d_pos;
  d_chiralTag = other.d_chiralTag;
  d_hybrid = other.d_hybrid;
  d_implicitValence = other.d_implicitValence;
  d_explicitValence = other.d_explicitValence;
  if (other.dp_monomerInfo) {
    dp_monomerInfo = other.dp_monomerInfo->copy();
  } else {
    dp_monomerInfo = nullptr;
  }
}
void Atom::initAtom() {
  df_isAromatic = false;
  df_noImplicit = false;
  d_numExplicitHs = 0;
  d_numRadicalElectrons = 0;
  d_formalCharge = 0;
  d_index = 0;
  d_isotope = 0;
  d_chiralTag = CHI_UNSPECIFIED;
  d_hybrid = UNSPECIFIED;
  dp_mol = nullptr;
  dp_monomerInfo = nullptr;

  d_implicitValence = -1;
  d_explicitValence = -1;
}

Atom::~Atom() {
  if (dp_monomerInfo) {
    delete dp_monomerInfo;
  }
}

Atom *Atom::copy() const {
  auto *res = new Atom(*this);
  return res;
}

void Atom::setOwningMol(ROMol *other) {
  // NOTE: this operation does not update the topology of the owning
  // molecule (i.e. this atom is not added to the graph).  Only
  // molecules can add atoms to themselves.
  dp_mol = other;
}

std::string Atom::getSymbol() const {
  std::string res;
  // handle dummies differently:
  if (d_atomicNum != 0 ||
      !getPropIfPresent<std::string>(common_properties::dummyLabel, res)) {
    res = PeriodicTable::getTable()->getElementSymbol(d_atomicNum);
  }
  return res;
}

unsigned int Atom::getDegree() const {
  PRECONDITION(dp_mol,
               "degree not defined for atoms not associated with molecules");
  return getOwningMol().getAtomDegree(this);
}

unsigned int Atom::getTotalDegree() const {
  PRECONDITION(dp_mol,
               "degree not defined for atoms not associated with molecules");
  unsigned int res = this->getTotalNumHs(false) + this->getDegree();
  return res;
}

//
//  If includeNeighbors is set, we'll loop over our neighbors
//   and include any of them that are Hs in the count here
//
unsigned int Atom::getTotalNumHs(bool includeNeighbors) const {
  PRECONDITION(dp_mol,
               "valence not defined for atoms not associated with molecules")
  int res = getNumExplicitHs() + getNumImplicitHs();
  if (includeNeighbors) {
    ROMol::ADJ_ITER begin, end;
    const ROMol *parent = &getOwningMol();
    boost::tie(begin, end) = parent->getAtomNeighbors(this);
    while (begin != end) {
      const Atom *at = parent->getAtomWithIdx(*begin);
      if (at->getAtomicNum() == 1) res++;
      ++begin;
    }
  }
  return res;
}

unsigned int Atom::getNumImplicitHs() const {
  if (df_noImplicit) return 0;

  PRECONDITION(d_implicitValence > -1,
               "getNumImplicitHs() called without preceding call to "
               "calcImplicitValence()");
  return getImplicitValence();
}

int Atom::getExplicitValence() const {
  PRECONDITION(dp_mol,
               "valence not defined for atoms not associated with molecules");
  PRECONDITION(
      d_explicitValence > -1,
      "getExplicitValence() called without call to calcExplicitValence()");
  return d_explicitValence;
}

unsigned int Atom::getTotalValence() const {
  PRECONDITION(dp_mol,
               "valence not defined for atoms not associated with molecules");
  return getExplicitValence() + getImplicitValence();
}

int Atom::calcExplicitValence(bool strict) {
  PRECONDITION(dp_mol,
               "valence not defined for atoms not associated with molecules");
  unsigned int res;
  // FIX: contributions of bonds to valence are being done at best
  // approximately
  double accum = 0;
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = getOwningMol().getAtomBonds(this);
  while (beg != end) {
    accum += getOwningMol()[*beg]->getValenceContrib(this);
    ++beg;
  }
  accum += getNumExplicitHs();

  // check accum is greater than the default valence
  unsigned int dv = PeriodicTable::getTable()->getDefaultValence(d_atomicNum);
  int chr = getFormalCharge();
  if (isEarlyAtom(d_atomicNum))
    chr *= -1;  // <- the usual correction for early atoms
  // special case for carbon - see GitHub #539
  if (d_atomicNum == 6 && chr > 0) chr = -chr;
  if (accum > (dv + chr) && this->getIsAromatic()) {
    // this needs some explanation : if the atom is aromatic and
    // accum > (dv + chr) we assume that no hydrogen can be added
    // to this atom.  We set x = (v + chr) such that x is the
    // closest possible integer to "accum" but less than
    // "accum".
    //
    // "v" here is one of the allowed valences. For example:
    //    sulfur here : O=c1ccs(=O)cc1
    //    nitrogen here : c1cccn1C

    int pval = dv + chr;
    const INT_VECT &valens =
        PeriodicTable::getTable()->getValenceList(d_atomicNum);
    for (auto vi = valens.begin(); vi != valens.end() && *vi != -1; ++vi) {
      int val = (*vi) + chr;
      if (val > accum) {
        break;
      } else {
        pval = val;
      }
    }
    accum = pval;
  }
  // despite promising to not to blame it on him - this a trick Greg
  // came up with: if we have a bond order sum of x.5 (i.e. 1.5, 2.5
  // etc) we would like it to round to the higher integer value --
  // 2.5 to 3 instead of 2 -- so we will add 0.1 to accum.
  // this plays a role in the number of hydrogen that are implicitly
  // added. This will only happen when the accum is a non-integer
  // value and less than the default valence (otherwise the above if
  // statement should have caught it). An example of where this can
  // happen is the following smiles:
  //    C1ccccC1
  // Daylight accepts this smiles and we should be able to Kekulize
  // correctly.
  accum += 0.1;

  res = static_cast<int>(round(accum));

  if (strict) {
    int effectiveValence;
    if (PeriodicTable::getTable()->getNouterElecs(d_atomicNum) >= 4) {
      effectiveValence = res - getFormalCharge();
    } else {
      // for boron and co, we move to the right in the PT, so adding
      // extra valences means adding negative charge
      effectiveValence = res + getFormalCharge();
    }
    const INT_VECT &valens =
        PeriodicTable::getTable()->getValenceList(d_atomicNum);
    int maxValence = *(valens.rbegin());
    // maxValence == -1 signifies that we'll take anything at the high end
    if (maxValence > 0 && effectiveValence > maxValence) {
      // the explicit valence is greater than any
      // allowed valence for the atoms - raise an error
      std::ostringstream errout;
      errout << "Explicit valence for atom # " << getIdx() << " "
             << PeriodicTable::getTable()->getElementSymbol(d_atomicNum) << ", "
             << effectiveValence << ", is greater than permitted";
      std::string msg = errout.str();
      BOOST_LOG(rdErrorLog) << msg << std::endl;
      throw MolSanitizeException(msg);
    }
  }
  d_explicitValence = res;

  return res;
}

int Atom::getImplicitValence() const {
  PRECONDITION(dp_mol,
               "valence not defined for atoms not associated with molecules");
  if (df_noImplicit) return 0;
  return d_implicitValence;
}

// NOTE: this uses the explicitValence, so it will call
// calcExplictValence() if it hasn't already been called
int Atom::calcImplicitValence(bool strict) {
  PRECONDITION(dp_mol,
               "valence not defined for atoms not associated with molecules");
  if (df_noImplicit) return 0;
  if (d_explicitValence == -1) this->calcExplicitValence(strict);
  // this is basically the difference between the allowed valence of
  // the atom and the explicit valence already specified - tells how
  // many Hs to add
  //
  int res;

  // The d-block and f-block of the periodic table (i.e. transition metals,
  // lanthanoids and actinoids) have no default valence.
  int dv = PeriodicTable::getTable()->getDefaultValence(d_atomicNum);
  if (dv == -1) {
    d_implicitValence = 0;
    return 0;
  }

  // here is how we are going to deal with the possibility of
  // multiple valences
  // - check the explicit valence "ev"
  // - if it is already equal to one of the allowed valences for the
  //    atom return 0
  // - otherwise take return difference between next larger allowed
  //   valence and "ev"
  // if "ev" is greater than all allowed valences for the atom raise an
  // exception
  // finally aromatic cases are dealt with differently - these atoms are allowed
  // only default valences
  const INT_VECT &valens =
      PeriodicTable::getTable()->getValenceList(d_atomicNum);
  int explicitPlusRadV = getExplicitValence() + getNumRadicalElectrons();
  int chg = getFormalCharge();

  // NOTE: this is here to take care of the difference in element on
  // the right side of the carbon vs left side of carbon
  // For elements on the right side of the periodic table
  // (electronegative elements):
  //     NHYD = V - SBO + CHG
  // For elements on the left side of the periodic table
  // (electropositive elements):
  //      NHYD = V - SBO - CHG
  // This reflects that hydrogen adds to, for example, O as H+ while
  // it adds to Na as H-.

  // V = valence
  // SBO = Sum of bond orders
  // CHG = Formal charge

  //  It seems reasonable that the line is drawn at Carbon (in Group
  //  IV), but we must assume on which side of the line C
  //  falls... an assumption which will not always be correct.  For
  //  example:
  //  - Electropositive Carbon: a C with three singly-bonded
  //    neighbors (DV = 4, SBO = 3, CHG = 1) and a positive charge (a
  //    'stable' carbocation) should not have any hydrogens added.
  //  - Electronegative Carbon: C in isonitrile, R[N+]#[C-] (DV = 4, SBO = 3,
  //    CHG = -1), also should not have any hydrogens added.
  //  Because isonitrile seems more relevant to pharma problems, we'll be
  //  making the second assumption:  *Carbon is electronegative*.
  //
  // So assuming you read all the above stuff - you know why we are
  // changing signs for "chg" here
  if (isEarlyAtom(d_atomicNum)) {
    chg *= -1;
  }
  // special case for carbon - see GitHub #539
  if (d_atomicNum == 6 && chg > 0) chg = -chg;

  // if we have an aromatic case treat it differently
  if (getIsAromatic()) {
    if (explicitPlusRadV <= (static_cast<int>(dv) + chg)) {
      res = dv + chg - explicitPlusRadV;
    } else {
      // As we assume when finding the explicitPlusRadValence if we are
      // aromatic we should not be adding any hydrogen and already
      // be at an accepted valence state,

      // FIX: this is just ERROR checking and probably moot - the
      // explicitPlusRadValence function called above should assure us that
      // we satisfy one of the accepted valence states for the
      // atom. The only diff I can think of is in the way we handle
      // formal charge here vs the explicit valence function.
      bool satis = false;
      for (auto vi = valens.begin(); vi != valens.end() && *vi > 0; ++vi) {
        if (explicitPlusRadV == ((*vi) + chg)) {
          satis = true;
          break;
        }
      }
      if (strict && !satis) {
        std::ostringstream errout;
        errout << "Explicit valence for aromatic atom # " << getIdx()
               << " not equal to any accepted valence\n";
        std::string msg = errout.str();
        BOOST_LOG(rdErrorLog) << msg << std::endl;
        throw MolSanitizeException(msg);
      }
      res = 0;
    }
  } else {
    // non-aromatic case we are allowed to have non default valences
    // and be able to add hydrogens
    res = -1;
    for (auto vi = valens.begin(); vi != valens.end() && *vi >= 0; ++vi) {
      int tot = (*vi) + chg;
      if (explicitPlusRadV <= tot) {
        res = tot - explicitPlusRadV;
        break;
      }
    }
    if (res < 0) {
      if (strict) {
        // this means that the explicit valence is greater than any
        // allowed valence for the atoms - raise an error
        std::ostringstream errout;
        errout << "Explicit valence for atom # " << getIdx() << " "
               << PeriodicTable::getTable()->getElementSymbol(d_atomicNum)
               << " greater than permitted";
        std::string msg = errout.str();
        BOOST_LOG(rdErrorLog) << msg << std::endl;
        throw MolSanitizeException(msg);
      } else {
        res = 0;
      }
    }
  }

  d_implicitValence = res;
  return res;
}

void Atom::setIsotope(unsigned int what) { d_isotope = what; }

double Atom::getMass() const {
  if (d_isotope) {
    double res =
        PeriodicTable::getTable()->getMassForIsotope(d_atomicNum, d_isotope);
    if (d_atomicNum != 0 && res == 0.0) res = d_isotope;
    return res;
  } else {
    return PeriodicTable::getTable()->getAtomicWeight(d_atomicNum);
  }
}

void Atom::setQuery(Atom::QUERYATOM_QUERY *what) {
  RDUNUSED_PARAM(what);
  //  Atoms don't have complex queries so this has to fail
  PRECONDITION(0, "plain atoms have no Query");
}
Atom::QUERYATOM_QUERY *Atom::getQuery() const { return nullptr; };
void Atom::expandQuery(Atom::QUERYATOM_QUERY *what,
                       Queries::CompositeQueryType how, bool maintainOrder) {
  RDUNUSED_PARAM(what);
  RDUNUSED_PARAM(how);
  RDUNUSED_PARAM(maintainOrder);
  PRECONDITION(0, "plain atoms have no Query");
}

bool Atom::Match(Atom const *what) const {
  PRECONDITION(what, "bad query atom");
  bool res = getAtomicNum() == what->getAtomicNum();

  // special dummy--dummy match case:
  //   [*] matches [*],[1*],[2*],etc.
  //   [1*] only matches [*] and [1*]
  if (res) {
    if (this->dp_mol && what->dp_mol &&
        this->getOwningMol().getRingInfo()->isInitialized() &&
        what->getOwningMol().getRingInfo()->isInitialized() &&
        this->getOwningMol().getRingInfo()->numAtomRings(d_index) >
            what->getOwningMol().getRingInfo()->numAtomRings(what->d_index)) {
      res = false;
    } else if (!this->getAtomicNum()) {
      // this is the new behavior, based on the isotopes:
      int tgt = this->getIsotope();
      int test = what->getIsotope();
      if (tgt && test && tgt != test) {
        res = false;
      }
    } else {
      // standard atom-atom match: The general rule here is that if this atom
      // has a property that
      // deviates from the default, then the other atom should match that value.
      if ((this->getFormalCharge() &&
           this->getFormalCharge() != what->getFormalCharge()) ||
          (this->getIsotope() && this->getIsotope() != what->getIsotope()) ||
          (this->getNumRadicalElectrons() &&
           this->getNumRadicalElectrons() != what->getNumRadicalElectrons())) {
        res = false;
      }
    }
  }
  return res;
}
void Atom::updatePropertyCache(bool strict) {
  calcExplicitValence(strict);
  calcImplicitValence(strict);
}

bool Atom::needsUpdatePropertyCache() const {
  if (this->d_explicitValence >= 0 &&
      (this->df_noImplicit || this->d_implicitValence >= 0)) {
    return false;
  }
  return true;
}

// returns the number of swaps required to convert the ordering
// of the probe list to match the order of our incoming bonds:
//
//  e.g. if our incoming bond order is: [0,1,2,3]:
//   getPerturbationOrder([1,0,2,3]) = 1
//   getPerturbationOrder([1,2,3,0]) = 3
//   getPerturbationOrder([1,2,0,3]) = 2
int Atom::getPerturbationOrder(INT_LIST probe) const {
  PRECONDITION(
      dp_mol,
      "perturbation order not defined for atoms not associated with molecules")
  INT_LIST ref;
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = getOwningMol().getAtomBonds(this);
  while (beg != end) {
    ref.push_back(getOwningMol()[*beg]->getIdx());
    ++beg;
  }
  int nSwaps = static_cast<int>(countSwapsToInterconvert(ref, probe));
  return nSwaps;
}

void Atom::invertChirality() {
  switch (getChiralTag()) {
    case CHI_TETRAHEDRAL_CW:
      setChiralTag(CHI_TETRAHEDRAL_CCW);
      break;
    case CHI_TETRAHEDRAL_CCW:
      setChiralTag(CHI_TETRAHEDRAL_CW);
      break;
    case CHI_OTHER:
    case CHI_UNSPECIFIED:
      break;
  }
}

void setAtomRLabel(Atom *atm, int rlabel) {
  PRECONDITION(atm, "bad atom");
  // rlabel ==> n2 => 0..99
  PRECONDITION(rlabel >= 0 && rlabel < 100,
               "rlabel out of range for MDL files");
  if (rlabel) {
    atm->setProp(common_properties::_MolFileRLabel,
                 static_cast<unsigned int>(rlabel));
  } else if (atm->hasProp(common_properties::_MolFileRLabel)) {
    atm->clearProp(common_properties::_MolFileRLabel);
  }
}
//! Gets the atom's RLabel
int getAtomRLabel(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  unsigned int rlabel = 0;
  atom->getPropIfPresent(common_properties::_MolFileRLabel, rlabel);
  return static_cast<int>(rlabel);
}

void setAtomAlias(Atom *atom, const std::string &alias) {
  PRECONDITION(atom, "bad atom");
  if (alias != "") {
    atom->setProp(common_properties::molFileAlias, alias);
  } else if (atom->hasProp(common_properties::molFileAlias)) {
    atom->clearProp(common_properties::molFileAlias);
  }
}

std::string getAtomAlias(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  std::string alias;
  atom->getPropIfPresent(common_properties::molFileAlias, alias);
  return alias;
}

void setAtomValue(Atom *atom, const std::string &value) {
  PRECONDITION(atom, "bad atom");
  if (value != "") {
    atom->setProp(common_properties::molFileValue, value);
  } else if (atom->hasProp(common_properties::molFileValue)) {
    atom->clearProp(common_properties::molFileValue);
  }
}

std::string getAtomValue(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  std::string value;
  atom->getPropIfPresent(common_properties::molFileValue, value);
  return value;
}

void setSupplementalSmilesLabel(Atom *atom, const std::string &label) {
  PRECONDITION(atom, "bad atom");
  if (label != "") {
    atom->setProp(common_properties::_supplementalSmilesLabel, label);
  } else if (atom->hasProp(common_properties::_supplementalSmilesLabel)) {
    atom->clearProp(common_properties::_supplementalSmilesLabel);
  }
}

std::string getSupplementalSmilesLabel(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  std::string label;
  atom->getPropIfPresent(common_properties::_supplementalSmilesLabel, label);
  return label;
}

}  // end o' namespace RDKit

std::ostream &operator<<(std::ostream &target, const RDKit::Atom &at) {
  target << at.getIdx() << " " << at.getAtomicNum() << " " << at.getSymbol();
  target << " chg: " << at.getFormalCharge();
  target << "  deg: " << at.getDegree();
  target << " exp: ";
  try {
    int explicitValence = at.getExplicitValence();
    target << explicitValence;
  } catch (...) {
    target << "N/A";
  }
  target << " imp: ";
  try {
    int implicitValence = at.getImplicitValence();
    target << implicitValence;
  } catch (...) {
    target << "N/A";
  }
  target << " hyb: " << at.getHybridization();
  target << " arom?: " << at.getIsAromatic();
  target << " chi: " << at.getChiralTag();
  if (at.getNumRadicalElectrons()) {
    target << " rad: " << at.getNumRadicalElectrons();
  }
  if (at.getIsotope()) {
    target << " iso: " << at.getIsotope();
  }
  if (at.getAtomMapNum()) {
    target << " mapno: " << at.getAtomMapNum();
  }
  return target;
};