File: ReactionRunner.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (1178 lines) | stat: -rw-r--r-- 48,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
//
//  Copyright (c) 2014-2017, Novartis Institutes for BioMedical Research Inc.
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutes for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior written
//       permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//

#include <GraphMol/ChemReactions/Reaction.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/QueryOps.h>
#include <boost/dynamic_bitset.hpp>
#include <boost/foreach.hpp>
#include <map>
#include <algorithm>
#include <GraphMol/ChemTransforms/ChemTransforms.h>
#include <GraphMol/Descriptors/MolDescriptors.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include "GraphMol/ChemReactions/ReactionRunner.h"
#include <RDGeneral/Invariant.h>
#include <GraphMol/MonomerInfo.h>

namespace RDKit {
typedef std::vector<MatchVectType> VectMatchVectType;
typedef std::vector<VectMatchVectType> VectVectMatchVectType;

namespace {
const std::string WAS_DUMMY =
    "was_dummy";  // was the atom originally a dummy in product
}  // namespace

namespace ReactionRunnerUtils {
//! returns whether or not all reactants matched
namespace {
const unsigned int MatchAll = UINT_MAX;
}

bool getReactantMatches(const MOL_SPTR_VECT &reactants,
                        const ChemicalReaction &rxn,
                        VectVectMatchVectType &matchesByReactant,
                        unsigned int matchSingleReactant = MatchAll) {
  PRECONDITION(reactants.size() == rxn.getNumReactantTemplates(),
               "reactant size mismatch");

  matchesByReactant.clear();
  matchesByReactant.resize(reactants.size());

  bool res = true;
  unsigned int i = 0;
  for (auto iter = rxn.beginReactantTemplates();
       iter != rxn.endReactantTemplates(); ++iter, i++) {
    if (matchSingleReactant == MatchAll || matchSingleReactant == i) {
      std::vector<MatchVectType> matchesHere;
      // NOTE that we are *not* uniquifying the results.
      //   This is because we need multiple matches in reactions. For example,
      //   The ring-closure coded as:
      //     [C:1]=[C:2] + [C:3]=[C:4][C:5]=[C:6] ->
      //     [C:1]1[C:2][C:3][C:4]=[C:5][C:6]1
      //   should give 4 products here:
      //     [Cl]C=C + [Br]C=CC=C ->
      //       [Cl]C1C([Br])C=CCC1
      //       [Cl]C1CC(Br)C=CC1
      //       C1C([Br])C=CCC1[Cl]
      //       C1CC([Br])C=CC1[Cl]
      //   Yes, in this case there are only 2 unique products, but that's
      //   a factor of the reactants' symmetry.
      //
      //   There's no particularly straightforward way of solving this problem
      //   of recognizing cases
      //   where we should give all matches and cases where we shouldn't; it's
      //   safer to just
      //   produce everything and let the client deal with uniquifying their
      //   results.
      int matchCount = SubstructMatch(*(reactants[i]), *iter->get(),
                                      matchesHere, false, true, false);
      BOOST_FOREACH (const MatchVectType &match, matchesHere) {
        bool keep = true;
        int pIdx, mIdx;
        BOOST_FOREACH (boost::tie(pIdx, mIdx), match) {
          if (reactants[i]->getAtomWithIdx(mIdx)->hasProp(
                  common_properties::_protected)) {
            keep = false;
            break;
          }
        }
        if (keep) {
          matchesByReactant[i].push_back(match);
        } else {
          --matchCount;
        }
      }
      if (!matchCount) {
        // no point continuing if we don't match one of the reactants:
        res = false;
        break;
      }
    }
  }
  return res;
}  // end of getReactantMatches()

// Return false if maxProducts has been hit...
//  Otherwise we can't tell if we were stopped exactly
//  or were terminated.
bool recurseOverReactantCombinations(
    const VectVectMatchVectType &matchesByReactant,
    VectVectMatchVectType &matchesPerProduct, unsigned int level,
    VectMatchVectType combination,
    unsigned int maxProducts) {
  unsigned int nReactants = matchesByReactant.size();
  URANGE_CHECK(level, nReactants);
  PRECONDITION(combination.size() == nReactants, "bad combination size");

  if(maxProducts && matchesPerProduct.size() >= maxProducts) {
    return false;
  }

  bool keepGoing = true;
  for (auto reactIt = matchesByReactant[level].begin();
       reactIt != matchesByReactant[level].end(); ++reactIt) {
    VectMatchVectType prod = combination;
    prod[level] = *reactIt;
    if (level == nReactants - 1) {
      // this is the bottom of the recursion:
      if(maxProducts && matchesPerProduct.size() >= maxProducts) {
        keepGoing = false;
        break;
      }
      matchesPerProduct.push_back(prod);

    } else {
      keepGoing = recurseOverReactantCombinations(matchesByReactant, matchesPerProduct,
                                                  level + 1, prod, maxProducts);
    }
  }
  return keepGoing;
}  // end of recurseOverReactantCombinations

void updateImplicitAtomProperties(Atom *prodAtom, const Atom *reactAtom) {
  PRECONDITION(prodAtom, "no product atom");
  PRECONDITION(reactAtom, "no reactant atom");
  if (prodAtom->getAtomicNum() != reactAtom->getAtomicNum()) {
    // if we changed atom identity all bets are off, just
    // return
    return;
  }
  if (!prodAtom->hasProp(common_properties::_QueryFormalCharge)) {
    prodAtom->setFormalCharge(reactAtom->getFormalCharge());
  }
  if (!prodAtom->hasProp(common_properties::_QueryIsotope)) {
    prodAtom->setIsotope(reactAtom->getIsotope());
  }
  if (!prodAtom->hasProp(common_properties::_ReactionDegreeChanged)) {
    if (!prodAtom->hasProp(common_properties::_QueryHCount)) {
      prodAtom->setNumExplicitHs(reactAtom->getNumExplicitHs());
      prodAtom->setNoImplicit(reactAtom->getNoImplicit());
    }
  }
}

void generateReactantCombinations(
    const VectVectMatchVectType &matchesByReactant,
    VectVectMatchVectType &matchesPerProduct,
    unsigned int maxProducts) {
  matchesPerProduct.clear();
  VectMatchVectType tmp;
  tmp.clear();
  tmp.resize(matchesByReactant.size());
  if (!recurseOverReactantCombinations(matchesByReactant, matchesPerProduct, 0, tmp, maxProducts)) {
    BOOST_LOG(rdWarningLog)
        << "Maximum product count hit " << maxProducts << ", stopping reaction early...\n";

  }
}  // end of generateReactantCombinations()

RWMOL_SPTR convertTemplateToMol(const ROMOL_SPTR prodTemplateSptr) {
  const ROMol *prodTemplate = prodTemplateSptr.get();
  auto *res = new RWMol();

  // --------- --------- --------- --------- --------- ---------
  // Initialize by making a copy of the product template as a normal molecule.
  // NOTE that we can't just use a normal copy because we do not want to end up
  // with query atoms or bonds in the product.

  // copy in the atoms:
  ROMol::ATOM_ITER_PAIR atItP = prodTemplate->getVertices();
  while (atItP.first != atItP.second) {
    const Atom *oAtom = (*prodTemplate)[*(atItP.first++)];
    auto *newAtom = new Atom(*oAtom);
    res->addAtom(newAtom, false, true);
    int mapNum;
    if (newAtom->getPropIfPresent(common_properties::molAtomMapNumber,
                                  mapNum)) {
      // set bookmarks for the mapped atoms:
      res->setAtomBookmark(newAtom, mapNum);
      // now clear the molAtomMapNumber property so that it doesn't
      // end up in the products (this was bug 3140490):
      newAtom->clearProp(common_properties::molAtomMapNumber);
      newAtom->setProp<int>(common_properties::reactionMapNum, mapNum);
    }

    newAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
    // if the product-template atom has the inversion flag set
    // to 4 (=SET), then bring its stereochem over, otherwise we'll
    // ignore it:
    int iFlag;
    if (oAtom->getPropIfPresent(common_properties::molInversionFlag, iFlag)) {
      if (iFlag == 4) newAtom->setChiralTag(oAtom->getChiralTag());
    }

    // check for properties we need to set:
    int val;
    if (newAtom->getPropIfPresent(common_properties::_QueryFormalCharge, val)) {
      newAtom->setFormalCharge(val);
    }
    if (newAtom->getPropIfPresent(common_properties::_QueryHCount, val)) {
      newAtom->setNumExplicitHs(val);
      newAtom->setNoImplicit(true);  // this was github #1544
    }
    if (newAtom->getPropIfPresent(common_properties::_QueryMass, val)) {
      // FIX: technically should do something with this
      // newAtom->setMass(val);
    }
    if (newAtom->getPropIfPresent(common_properties::_QueryIsotope, val)) {
      newAtom->setIsotope(val);
    }
  }
  // and the bonds:
  ROMol::BOND_ITER_PAIR bondItP = prodTemplate->getEdges();
  while (bondItP.first != bondItP.second) {
    const Bond *oldB = (*prodTemplate)[*(bondItP.first++)];
    unsigned int bondIdx;
    bondIdx = res->addBond(oldB->getBeginAtomIdx(), oldB->getEndAtomIdx(),
                           oldB->getBondType()) -
              1;
    // make sure we don't lose the bond dir information:
    Bond *newB = res->getBondWithIdx(bondIdx);
    newB->setBondDir(oldB->getBondDir());
    // Special case/hack:
    //  The product has been processed by the SMARTS parser.
    //  The SMARTS parser tags unspecified bonds as single, but then adds
    //  a query so that they match single or double
    //  This caused Issue 1748846
    //   http://sourceforge.net/tracker/index.php?func=detail&aid=1748846&group_id=160139&atid=814650
    //  We need to fix that little problem now:
    if (oldB->hasQuery()) {
      //  remember that the product has been processed by the SMARTS parser.
      std::string queryDescription = oldB->getQuery()->getDescription();
      if (queryDescription == "BondOr" && oldB->getBondType() == Bond::SINGLE) {
        //  We need to fix that little problem now:
        if (newB->getBeginAtom()->getIsAromatic() &&
            newB->getEndAtom()->getIsAromatic()) {
          newB->setBondType(Bond::AROMATIC);
          newB->setIsAromatic(true);
        } else {
          newB->setBondType(Bond::SINGLE);
          newB->setIsAromatic(false);
        }
      } else if (queryDescription == "BondNull") {
        newB->setProp(common_properties::NullBond, 1);
      }
    }
    // copy properties over:
    bool preserveExisting = true;
    newB->updateProps(*static_cast<const RDProps *>(oldB), preserveExisting);
  }
  return RWMOL_SPTR(res);
}  // end of convertTemplateToMol()

struct ReactantProductAtomMapping {
  ReactantProductAtomMapping(unsigned lenghtBitSet) {
    mappedAtoms.resize(lenghtBitSet);
    skippedAtoms.resize(lenghtBitSet);
  }

  boost::dynamic_bitset<> mappedAtoms;
  boost::dynamic_bitset<> skippedAtoms;
  std::map<unsigned int, std::vector<unsigned int>> reactProdAtomMap;
  std::map<unsigned int, unsigned int> prodReactAtomMap;
  std::map<unsigned int, unsigned int> prodAtomBondMap;

  // maps (atom map number,atom map number) pairs in the reactant template
  // to whether or not they are bonded in the template.
  std::map<std::pair<unsigned int, unsigned int>, unsigned int>
      reactantTemplateAtomBonds;
};

ReactantProductAtomMapping *getAtomMappingsReactantProduct(
    const MatchVectType &match, const ROMol &reactantTemplate,
    RWMOL_SPTR product, unsigned numReactAtoms) {
  auto *mapping = new ReactantProductAtomMapping(numReactAtoms);

  // keep track of which mapped atoms in the reactant template are bonded to
  // each other.
  // This is part of the fix for #1387
  {
    ROMol::EDGE_ITER firstB, lastB;
    boost::tie(firstB, lastB) = reactantTemplate.getEdges();
    while (firstB != lastB) {
      const Bond *bond = reactantTemplate[*firstB];
      // this will put in pairs with 0s for things that aren't mapped, but we
      // don't care about that
      int a1mapidx = bond->getBeginAtom()->getAtomMapNum();
      int a2mapidx = bond->getEndAtom()->getAtomMapNum();
      if (a1mapidx > a2mapidx) std::swap(a1mapidx, a2mapidx);
      mapping->reactantTemplateAtomBonds[std::make_pair(a1mapidx, a2mapidx)] =
          1;
      ++firstB;
    }
  }

  for (const auto &i : match) {
    const Atom *templateAtom = reactantTemplate.getAtomWithIdx(i.first);
    int molAtomMapNumber;
    if (templateAtom->getPropIfPresent(common_properties::molAtomMapNumber,
                                       molAtomMapNumber)) {
      if (product->hasAtomBookmark(molAtomMapNumber)) {
        RWMol::ATOM_PTR_LIST atomIdxs =
            product->getAllAtomsWithBookmark(molAtomMapNumber);
        for (auto a : atomIdxs) {
          unsigned int pIdx = a->getIdx();
          mapping->reactProdAtomMap[i.second].push_back(pIdx);
          mapping->mappedAtoms[i.second] = 1;
          CHECK_INVARIANT(pIdx < product->getNumAtoms(), "yikes!");
          mapping->prodReactAtomMap[pIdx] = i.second;
        }
      } else {
        // this skippedAtom has an atomMapNumber, but it's not in this product
        // (it's either in another product or it's not mapped at all).
        mapping->skippedAtoms[i.second] = 1;
      }
    } else {
      // This skippedAtom appears in the match, but not in a product:
      mapping->skippedAtoms[i.second] = 1;
    }
  }
  return mapping;
}

void setReactantBondPropertiesToProduct(RWMOL_SPTR product,
                                        const ROMol &reactant,
                                        ReactantProductAtomMapping *mapping) {
  ROMol::BOND_ITER_PAIR bondItP = product->getEdges();
  while (bondItP.first != bondItP.second) {
    Bond *pBond = (*product)[*(bondItP.first)];
    ++bondItP.first;
    if (pBond->hasProp(common_properties::NullBond) ||
        pBond->hasProp(common_properties::_MolFileBondQuery)) {
      if (mapping->prodReactAtomMap.find(pBond->getBeginAtomIdx()) !=
              mapping->prodReactAtomMap.end() &&
          mapping->prodReactAtomMap.find(pBond->getEndAtomIdx()) !=
              mapping->prodReactAtomMap.end()) {
        // the bond is between two mapped atoms from this reactant:
        unsigned begIdx = mapping->prodReactAtomMap[pBond->getBeginAtomIdx()];
        unsigned endIdx = mapping->prodReactAtomMap[pBond->getEndAtomIdx()];
        const Bond *rBond = reactant.getBondBetweenAtoms(begIdx, endIdx);
        if (!rBond) continue;
        pBond->setBondType(rBond->getBondType());
        pBond->setBondDir(rBond->getBondDir());
        pBond->setIsAromatic(rBond->getIsAromatic());
        if (pBond->hasProp(common_properties::NullBond)) {
          pBond->clearProp(common_properties::NullBond);
        }
      }
    }
  }
}

void checkProductChirality(Atom::ChiralType reactantChirality,
                           Atom *productAtom) {
  int flagVal;
  productAtom->getProp(common_properties::molInversionFlag, flagVal);

  switch (flagVal) {
    case 0:
      // FIX: should we clear the chirality or leave it alone? for now we leave
      // it alone
      // productAtom->setChiralTag(Atom::ChiralType::CHI_UNSPECIFIED);
      productAtom->setChiralTag(reactantChirality);
      break;
    case 1:
      // inversion
      if (reactantChirality != Atom::CHI_TETRAHEDRAL_CW &&
          reactantChirality != Atom::CHI_TETRAHEDRAL_CCW) {
        BOOST_LOG(rdWarningLog)
            << "unsupported chiral type on reactant atom ignored\n";
      } else {
        productAtom->setChiralTag(reactantChirality);
        productAtom->invertChirality();
      }
      break;
    case 2:
      // retention: just set to the reactant
      productAtom->setChiralTag(reactantChirality);
      break;
    case 3:
      // remove stereo
      productAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
      break;
    case 4:
      // set stereo, so leave it the way it was in the product template
      break;
    default:
      BOOST_LOG(rdWarningLog) << "unrecognized chiral inversion/retention flag "
                                 "on product atom ignored\n";
  }
}

void setReactantAtomPropertiesToProduct(Atom *productAtom,
                                        const Atom &reactantAtom,
                                        bool setImplicitProperties) {
  // which properties need to be set from the reactant?
  if (productAtom->getAtomicNum() <= 0 ||
      productAtom->hasProp(common_properties::_MolFileAtomQuery)) {
    productAtom->setAtomicNum(reactantAtom.getAtomicNum());
    productAtom->setIsAromatic(reactantAtom.getIsAromatic());
    // don't copy isotope information over from dummy atoms
    // (part of github #243) unless we're setting implicit properties,
    // in which case we do need to copy them in (github #1269)
    if (!setImplicitProperties) {
      productAtom->setIsotope(reactantAtom.getIsotope());
    }
    // remove dummy labels (if present)
    if (productAtom->hasProp(common_properties::dummyLabel)) {
      productAtom->clearProp(common_properties::dummyLabel);
    }
    if (productAtom->hasProp(common_properties::_MolFileRLabel)) {
      productAtom->clearProp(common_properties::_MolFileRLabel);
    }
    productAtom->setProp<unsigned int>(common_properties::reactantAtomIdx,
                                       reactantAtom.getIdx());
    productAtom->setProp(WAS_DUMMY, true);
  } else {
    // remove bookkeeping labels (if present)
    if (productAtom->hasProp(WAS_DUMMY)) productAtom->clearProp(WAS_DUMMY);
  }
  productAtom->setProp<unsigned int>(common_properties::reactantAtomIdx,
                                     reactantAtom.getIdx());
  if (setImplicitProperties) {
    updateImplicitAtomProperties(productAtom, &reactantAtom);
  }
  // One might be tempted to copy over the reactant atom's chirality into the
  // product atom if chirality is not specified on the product. This would be a
  // very bad idea because the order of bonds will almost certainly change on
  // the
  // atom and the chirality is referenced to bond order.

  // --------- --------- --------- --------- --------- ---------
  // While we're here, set the stereochemistry
  // FIX: this should be free-standing, not in this function.
  if (reactantAtom.getChiralTag() != Atom::CHI_UNSPECIFIED &&
      reactantAtom.getChiralTag() != Atom::CHI_OTHER &&
      productAtom->hasProp(common_properties::molInversionFlag)) {
    checkProductChirality(reactantAtom.getChiralTag(), productAtom);
  }

  // copy over residue information if it's there. This was github #1632
  if (reactantAtom.getMonomerInfo()) {
    productAtom->setMonomerInfo(reactantAtom.getMonomerInfo()->copy());
  }
}

void setNewProductBond(const Bond &origB, RWMOL_SPTR product,
                       unsigned bondBeginIdx, unsigned bondEndIdx) {
  unsigned bondIdx =
      product->addBond(bondBeginIdx, bondEndIdx, origB.getBondType()) - 1;
  Bond *newB = product->getBondWithIdx(bondIdx);
  newB->setBondDir(origB.getBondDir());
}

void addMissingProductBonds(const Bond &origB, RWMOL_SPTR product,
                            ReactantProductAtomMapping *mapping) {
  unsigned int begIdx = origB.getBeginAtomIdx();
  unsigned int endIdx = origB.getEndAtomIdx();

  std::vector<unsigned> prodBeginIdxs = mapping->reactProdAtomMap[begIdx];
  std::vector<unsigned> prodEndIdxs = mapping->reactProdAtomMap[endIdx];
  CHECK_INVARIANT(prodBeginIdxs.size() == prodEndIdxs.size(),
                  "Different number of start-end points for product bonds.");
  for (unsigned i = 0; i < prodBeginIdxs.size(); i++) {
    setNewProductBond(origB, product, prodBeginIdxs.at(i), prodEndIdxs.at(i));
  }
}

void addMissingProductAtom(const Atom &reactAtom, unsigned reactNeighborIdx,
                           unsigned prodNeighborIdx, RWMOL_SPTR product,
                           const ROMol &reactant,
                           ReactantProductAtomMapping *mapping) {
  auto *newAtom = new Atom(reactAtom);
  unsigned reactAtomIdx = reactAtom.getIdx();
  newAtom->setProp<unsigned int>(common_properties::reactantAtomIdx,
                                 reactAtomIdx);
  unsigned productIdx = product->addAtom(newAtom, false, true);
  mapping->reactProdAtomMap[reactAtomIdx].push_back(productIdx);
  mapping->prodReactAtomMap[productIdx] = reactAtomIdx;
  // add the bonds
  const Bond *origB =
      reactant.getBondBetweenAtoms(reactNeighborIdx, reactAtomIdx);
  unsigned int begIdx = origB->getBeginAtomIdx();
  if (begIdx == reactNeighborIdx) {
    setNewProductBond(*origB, product, prodNeighborIdx, productIdx);
  } else {
    setNewProductBond(*origB, product, productIdx, prodNeighborIdx);
  }
}

void addReactantNeighborsToProduct(
    const ROMol &reactant, const Atom &reactantAtom, RWMOL_SPTR product,
    boost::dynamic_bitset<> &visitedAtoms,
    std::vector<const Atom *> &chiralAtomsToCheck,
    ReactantProductAtomMapping *mapping) {
  std::list<const Atom *> atomStack;
  atomStack.push_back(&reactantAtom);

  // std::cerr << "-------------------" << std::endl;
  // std::cerr << "  add reactant neighbors from: " << reactantAtom.getIdx()
  //           << std::endl;
  // #if 1
  //   product->updatePropertyCache(false);
  //   product->debugMol(std::cerr);
  //   std::cerr << "-------------------" << std::endl;
  // #endif

  while (!atomStack.empty()) {
    const Atom *lReactantAtom = atomStack.front();
    // std::cerr << "    front: " << lReactantAtom->getIdx() << std::endl;
    atomStack.pop_front();

    // each atom in the stack is guaranteed to already be in the product:
    CHECK_INVARIANT(mapping->reactProdAtomMap.find(lReactantAtom->getIdx()) !=
                        mapping->reactProdAtomMap.end(),
                    "reactant atom on traversal stack not present in product.");

    std::vector<unsigned> lReactantAtomProductIndex =
        mapping->reactProdAtomMap[lReactantAtom->getIdx()];
    unsigned lreactIdx = lReactantAtom->getIdx();
    visitedAtoms[lreactIdx] = 1;
    // Check our neighbors:
    ROMol::ADJ_ITER nbrIdx, endNbrs;
    boost::tie(nbrIdx, endNbrs) = reactant.getAtomNeighbors(lReactantAtom);
    while (nbrIdx != endNbrs) {
      // Four possibilities here. The neighbor:
      //  0) has been visited already: do nothing
      //  1) is part of the match (thus already in the product): set a bond to
      //  it
      //  2) has been added: set a bond to it
      //  3) has not yet been added: add it, set a bond to it, and push it
      //     onto the stack
      // std::cerr << "       nbr: " << *nbrIdx << std::endl;
      // std::cerr << "              visited: " << visitedAtoms[*nbrIdx]
      //           << "  skipped: " << mapping->skippedAtoms[*nbrIdx]
      //           << " mapped: " << mapping->mappedAtoms[*nbrIdx]
      //           << " mappedO: " << mapping->mappedAtoms[lreactIdx] <<
      //           std::endl;
      if (!visitedAtoms[*nbrIdx] && !mapping->skippedAtoms[*nbrIdx]) {
        if (mapping->mappedAtoms[*nbrIdx]) {
          // this is case 1 (neighbor in match); set a bond to the neighbor if
          // this atom
          // is not also in the match (match-match bonds were set when the
          // product template was
          // copied in to start things off).;
          if (!mapping->mappedAtoms[lreactIdx]) {
            CHECK_INVARIANT(mapping->reactProdAtomMap.find(*nbrIdx) !=
                                mapping->reactProdAtomMap.end(),
                            "reactant atom not present in product.");
            const Bond *origB =
                reactant.getBondBetweenAtoms(lreactIdx, *nbrIdx);
            addMissingProductBonds(*origB, product, mapping);
          } else {
            // both mapped atoms are in the match.
            // they are bonded in the reactant (otherwise we wouldn't be here),
            //
            // If they do not have already have a bond in the product and did
            // not have one in the reactant template then set one here
            // If they do have a bond in the reactant template, then we
            // assume that this is an intentional bond break, so we don't do
            // anything
            //
            // this was github #1387
            unsigned prodBeginIdx = mapping->reactProdAtomMap[lreactIdx][0];
            unsigned prodEndIdx = mapping->reactProdAtomMap[*nbrIdx][0];
            if (!product->getBondBetweenAtoms(prodBeginIdx, prodEndIdx)) {
              // They must be mapped
              CHECK_INVARIANT(
                  product->getAtomWithIdx(prodBeginIdx)
                          ->hasProp(common_properties::reactionMapNum) &&
                      product->getAtomWithIdx(prodEndIdx)
                          ->hasProp(common_properties::reactionMapNum),
                  "atoms should be mapped in product");
              int a1mapidx =
                  product->getAtomWithIdx(prodBeginIdx)
                      ->getProp<int>(common_properties::reactionMapNum);
              int a2mapidx =
                  product->getAtomWithIdx(prodEndIdx)
                      ->getProp<int>(common_properties::reactionMapNum);
              if (a1mapidx > a2mapidx) std::swap(a1mapidx, a2mapidx);
              if (mapping->reactantTemplateAtomBonds.find(
                      std::make_pair(a1mapidx, a2mapidx)) ==
                  mapping->reactantTemplateAtomBonds.end()) {
                const Bond *origB =
                    reactant.getBondBetweenAtoms(lreactIdx, *nbrIdx);
                addMissingProductBonds(*origB, product, mapping);
              }
            }
          }
        } else if (mapping->reactProdAtomMap.find(*nbrIdx) !=
                   mapping->reactProdAtomMap.end()) {
          // case 2, the neighbor has been added and we just need to set a bond
          // to it:
          const Bond *origB = reactant.getBondBetweenAtoms(lreactIdx, *nbrIdx);
          addMissingProductBonds(*origB, product, mapping);
        } else {
          // case 3, add the atom, a bond to it, and push the atom onto the
          // stack
          const Atom *neighbor = reactant.getAtomWithIdx(*nbrIdx);
          for (unsigned int i : lReactantAtomProductIndex) {
            addMissingProductAtom(*neighbor, lreactIdx, i, product, reactant,
                                  mapping);
          }
          // update the stack:
          atomStack.push_back(neighbor);
          // if the atom is chiral, we need to check its bond ordering later:
          if (neighbor->getChiralTag() != Atom::CHI_UNSPECIFIED) {
            chiralAtomsToCheck.push_back(neighbor);
          }
        }
      }
      nbrIdx++;
    }
  }  // end of atomStack traversal
}

void checkAndCorrectChiralityOfMatchingAtomsInProduct(
    const ROMol &reactant, unsigned reactantAtomIdx, const Atom &reactantAtom,
    RWMOL_SPTR product, ReactantProductAtomMapping *mapping) {
  for (unsigned i = 0; i < mapping->reactProdAtomMap[reactantAtomIdx].size();
       i++) {
    unsigned productAtomIdx = mapping->reactProdAtomMap[reactantAtomIdx][i];
    Atom *productAtom = product->getAtomWithIdx(productAtomIdx);

    if (productAtom->getChiralTag() != Atom::CHI_UNSPECIFIED ||
        reactantAtom.getChiralTag() == Atom::CHI_UNSPECIFIED ||
        reactantAtom.getChiralTag() == Atom::CHI_OTHER ||
        productAtom->hasProp(common_properties::molInversionFlag)) {
      continue;
    }
    // we can only do something sensible here if we have the same number of
    // bonds
    // in the reactants and the products:
    if (reactantAtom.getDegree() != productAtom->getDegree()) {
      continue;
    }
    unsigned int nUnknown = 0;
    INT_LIST pOrder;
    ROMol::ADJ_ITER nbrIdx, endNbrs;
    boost::tie(nbrIdx, endNbrs) = product->getAtomNeighbors(productAtom);
    while (nbrIdx != endNbrs) {
      if (mapping->prodReactAtomMap.find(*nbrIdx) ==
              mapping->prodReactAtomMap.end() ||
          !reactant.getBondBetweenAtoms(reactantAtom.getIdx(),
                                        mapping->prodReactAtomMap[*nbrIdx])) {
        ++nUnknown;
        // if there's more than one bond in the product that doesn't correspond
        // to anything in the reactant, we're also doomed
        if (nUnknown > 1) break;
        // otherwise, add a -1 to the bond order that we'll fill in later
        pOrder.push_back(-1);
      } else {
        const Bond *rBond = reactant.getBondBetweenAtoms(
            reactantAtom.getIdx(), mapping->prodReactAtomMap[*nbrIdx]);
        CHECK_INVARIANT(rBond, "expected reactant bond not found");
        pOrder.push_back(rBond->getIdx());
      }
      ++nbrIdx;
    }
    if (nUnknown == 1) {
      // find the reactant bond that hasn't yet been accounted for:
      int unmatchedBond = -1;
      boost::tie(nbrIdx, endNbrs) = reactant.getAtomNeighbors(&reactantAtom);
      while (nbrIdx != endNbrs) {
        const Bond *rBond =
            reactant.getBondBetweenAtoms(reactantAtom.getIdx(), *nbrIdx);
        if (std::find(pOrder.begin(), pOrder.end(), rBond->getIdx()) ==
            pOrder.end()) {
          unmatchedBond = rBond->getIdx();
          break;
        }
        ++nbrIdx;
      }
      // what must be true at this point:
      //  1) there's a -1 in pOrder that we'll substitute for
      //  2) unmatchedBond contains the index of the substitution
      auto bPos = std::find(pOrder.begin(), pOrder.end(), -1);
      if (unmatchedBond >= 0 && bPos != pOrder.end()) {
        *bPos = unmatchedBond;
      }
      if (std::find(pOrder.begin(), pOrder.end(), -1) == pOrder.end()) {
        nUnknown = 0;
      }
    }
    if (!nUnknown) {
      productAtom->setChiralTag(reactantAtom.getChiralTag());
      int nSwaps = reactantAtom.getPerturbationOrder(pOrder);
      if (nSwaps % 2) {
        productAtom->invertChirality();
      }
    }
  }
}

void checkAndCorrectChiralityOfProduct(
    const std::vector<const Atom *> &chiralAtomsToCheck, RWMOL_SPTR product,
    ReactantProductAtomMapping *mapping) {
  for (auto reactantAtom : chiralAtomsToCheck) {
    CHECK_INVARIANT(reactantAtom->getChiralTag() != Atom::CHI_UNSPECIFIED,
                    "missing atom chirality.");
    unsigned int reactAtomDegree =
        reactantAtom->getOwningMol().getAtomDegree(reactantAtom);
    for (unsigned i = 0;
         i < mapping->reactProdAtomMap[reactantAtom->getIdx()].size(); i++) {
      unsigned productAtomIdx =
          mapping->reactProdAtomMap[reactantAtom->getIdx()][i];
      Atom *productAtom = product->getAtomWithIdx(productAtomIdx);
      CHECK_INVARIANT(
          reactantAtom->getChiralTag() == productAtom->getChiralTag(),
          "invalid product chirality.");

      if (reactAtomDegree != product->getAtomDegree(productAtom)) {
        // If the number of bonds to the atom has changed in the course of the
        // reaction we're lost, so remove chirality.
        //  A word of explanation here: the atoms in the chiralAtomsToCheck set
        //  are
        //  not explicitly mapped atoms of the reaction, so we really have no
        //  idea what
        //  to do with this case. At the moment I'm not even really sure how
        //  this
        //  could happen, but better safe than sorry.
        productAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
      } else if (reactantAtom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
                 reactantAtom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) {
        // this will contain the indices of product bonds in the
        // reactant order:
        INT_LIST newOrder;
        ROMol::OEDGE_ITER beg, end;
        boost::tie(beg, end) =
            reactantAtom->getOwningMol().getAtomBonds(reactantAtom);
        while (beg != end) {
          const Bond *reactantBond = reactantAtom->getOwningMol()[*beg];
          unsigned int oAtomIdx =
              reactantBond->getOtherAtomIdx(reactantAtom->getIdx());
          CHECK_INVARIANT(mapping->reactProdAtomMap.find(oAtomIdx) !=
                              mapping->reactProdAtomMap.end(),
                          "other atom from bond not mapped.");
          const Bond *productBond;
          unsigned neighborBondIdx = mapping->reactProdAtomMap[oAtomIdx][i];
          productBond = product->getBondBetweenAtoms(productAtom->getIdx(),
                                                     neighborBondIdx);
          CHECK_INVARIANT(productBond, "no matching bond found in product");
          newOrder.push_back(productBond->getIdx());
          ++beg;
        }
        int nSwaps = productAtom->getPerturbationOrder(newOrder);
        if (nSwaps % 2) {
          productAtom->invertChirality();
        }
      } else {
        // not tetrahedral chirality, don't do anything.
      }
    }
  }  // end of loop over chiralAtomsToCheck
}

void generateProductConformers(Conformer *productConf, const ROMol &reactant,
                               ReactantProductAtomMapping *mapping) {
  if (!reactant.getNumConformers()) {
    return;
  }
  const Conformer &reactConf = reactant.getConformer();
  if (reactConf.is3D()) {
    productConf->set3D(true);
  }
  for (std::map<unsigned int, std::vector<unsigned int>>::const_iterator pr =
           mapping->reactProdAtomMap.begin();
       pr != mapping->reactProdAtomMap.end(); ++pr) {
    std::vector<unsigned> prodIdxs = pr->second;
    if (prodIdxs.size() > 1) {
      BOOST_LOG(rdWarningLog) << "reactant atom match more than one product "
                                 "atom, coordinates need to be revised\n";
    }
    // is this reliable when multiple product atom mapping occurs????
    for (unsigned int prodIdx : prodIdxs) {
      productConf->setAtomPos(prodIdx, reactConf.getAtomPos(pr->first));
    }
  }
}

void addReactantAtomsAndBonds(const ChemicalReaction &rxn, RWMOL_SPTR product,
                              const ROMOL_SPTR reactantSptr,
                              const MatchVectType &match,
                              const ROMOL_SPTR reactantTemplate,
                              Conformer *productConf) {
  // start by looping over all matches and marking the reactant atoms that
  // have already been "added" by virtue of being in the product. We'll also
  // mark "skipped" atoms: those that are in the match, but not in this
  // particular product (or, perhaps, not in any product)
  // At the same time we'll set up a map between the indices of those
  // atoms and their index in the product.
  ReactantProductAtomMapping *mapping = getAtomMappingsReactantProduct(
      match, *reactantTemplate, product, reactantSptr->getNumAtoms());

  boost::dynamic_bitset<> visitedAtoms(reactantSptr->getNumAtoms());

  const ROMol *reactant = reactantSptr.get();

  // ---------- ---------- ---------- ---------- ---------- ----------
  // Loop over the bonds in the product and look for those that have
  // the NullBond property set. These are bonds for which no information
  // (other than their existance) was provided in the template:
  setReactantBondPropertiesToProduct(product, *reactant, mapping);

  // ---------- ---------- ---------- ---------- ---------- ----------
  // Loop over the atoms in the match that were added to the product
  // From the corresponding atom in the reactant, do a graph traversal
  // to find other connected atoms that should be added:

  std::vector<const Atom *> chiralAtomsToCheck;
  for (const auto &matchIdx : match) {
    int reactantAtomIdx = matchIdx.second;
    if (mapping->mappedAtoms[reactantAtomIdx]) {
      CHECK_INVARIANT(mapping->reactProdAtomMap.find(reactantAtomIdx) !=
                          mapping->reactProdAtomMap.end(),
                      "mapped reactant atom not present in product.");

      const Atom *reactantAtom = reactant->getAtomWithIdx(reactantAtomIdx);

      for (unsigned i = 0;
           i < mapping->reactProdAtomMap[reactantAtomIdx].size(); i++) {
        // here's a pointer to the atom in the product:
        unsigned productAtomIdx = mapping->reactProdAtomMap[reactantAtomIdx][i];
        Atom *productAtom = product->getAtomWithIdx(productAtomIdx);
        setReactantAtomPropertiesToProduct(productAtom, *reactantAtom,
                                           rxn.getImplicitPropertiesFlag());
      }
      // now traverse:
      addReactantNeighborsToProduct(*reactant, *reactantAtom, product,
                                    visitedAtoms, chiralAtomsToCheck, mapping);

      // now that we've added all the reactant's neighbors, check to see if
      // it is chiral in the reactant but is not in the reaction. If so
      // we need to worry about its chirality
      checkAndCorrectChiralityOfMatchingAtomsInProduct(
          *reactant, reactantAtomIdx, *reactantAtom, product, mapping);
    }
  }  // end of loop over matched atoms

  // ---------- ---------- ---------- ---------- ---------- ----------
  // now we need to loop over atoms from the reactants that were chiral but not
  // directly involved in the reaction in order to make sure their chirality
  // hasn't
  // been disturbed
  checkAndCorrectChiralityOfProduct(chiralAtomsToCheck, product, mapping);

  // ---------- ---------- ---------- ---------- ---------- ----------
  // finally we may need to set the coordinates in the product conformer:
  if (productConf) {
    productConf->resize(product->getNumAtoms());
    generateProductConformers(productConf, *reactant, mapping);
  }
  delete (mapping);
}  // end of addReactantAtomsAndBonds

MOL_SPTR_VECT generateOneProductSet(
    const ChemicalReaction &rxn, const MOL_SPTR_VECT &reactants,
    const std::vector<MatchVectType> &reactantsMatch) {
  PRECONDITION(reactants.size() == reactantsMatch.size(),
               "vector size mismatch");

  // if any of the reactants have a conformer, we'll go ahead and
  // generate conformers for the products:
  bool doConfs = false;
  BOOST_FOREACH (ROMOL_SPTR reactant, reactants) {
    if (reactant->getNumConformers()) {
      doConfs = true;
      break;
    }
  }

  MOL_SPTR_VECT res;
  res.resize(rxn.getNumProductTemplates());
  unsigned int prodId = 0;
  for (auto pTemplIt = rxn.beginProductTemplates();
       pTemplIt != rxn.endProductTemplates(); ++pTemplIt) {
    // copy product template and its properties to a new product RWMol
    RWMOL_SPTR product = convertTemplateToMol(*pTemplIt);
    Conformer *conf = nullptr;
    if (doConfs) {
      conf = new Conformer();
      conf->set3D(false);
    }

    unsigned int reactantId = 0;
    for (auto iter = rxn.beginReactantTemplates();
         iter != rxn.endReactantTemplates(); ++iter, reactantId++) {
      addReactantAtomsAndBonds(rxn, product, reactants.at(reactantId),
                               reactantsMatch.at(reactantId), *iter, conf);
    }

    if (doConfs) {
      product->addConformer(conf, true);
    }
    res[prodId] = product;
    ++prodId;
  }
  return res;
}
}  // namespace ReactionRunnerUtils

std::vector<MOL_SPTR_VECT> run_Reactants(const ChemicalReaction &rxn,
                                         const MOL_SPTR_VECT &reactants,
                                         unsigned int maxProducts) {
  if (!rxn.isInitialized()) {
    throw ChemicalReactionException(
        "initMatchers() must be called before runReactants()");
  }
  if (reactants.size() != rxn.getNumReactantTemplates()) {
    throw ChemicalReactionException(
        "Number of reactants provided does not match number of reactant "
        "templates.");
  }
  BOOST_FOREACH (ROMOL_SPTR msptr, reactants) {
    CHECK_INVARIANT(msptr, "bad molecule in reactants");
    msptr->clearAllAtomBookmarks();  // we use this as scratch space
  }

  std::vector<MOL_SPTR_VECT> productMols;
  productMols.clear();

  // if we have no products, return now:
  if (!rxn.getNumProductTemplates()) {
    return productMols;
  }

  // find the matches for each reactant:
  VectVectMatchVectType matchesByReactant;
  if (!ReactionRunnerUtils::getReactantMatches(reactants, rxn,
                                               matchesByReactant)) {
    // some reactants didn't find a match, return an empty product list:
    return productMols;
  }
  // -------------------------------------------------------
  // we now have matches for each reactant, so we can start creating products:
  // start by doing the combinatorics on the matches:
  VectVectMatchVectType reactantMatchesPerProduct;
  ReactionRunnerUtils::generateReactantCombinations(matchesByReactant,
                                                    reactantMatchesPerProduct,
                                                    maxProducts);
  productMols.resize(reactantMatchesPerProduct.size());

  for (unsigned int productId = 0; productId != productMols.size();
       ++productId) {
    MOL_SPTR_VECT lProds = ReactionRunnerUtils::generateOneProductSet(
        rxn, reactants, reactantMatchesPerProduct[productId]);
    productMols[productId] = lProds;
  }

  return productMols;
}  // end of ChemicalReaction::runReactants()

// Generate the product set based on a SINGLE reactant
std::vector<MOL_SPTR_VECT> run_Reactant(const ChemicalReaction &rxn,
                                        const ROMOL_SPTR &reactant,
                                        unsigned int reactantIdx) {
  if (!rxn.isInitialized()) {
    throw ChemicalReactionException(
        "initMatchers() must be called before runReactants()");
  }

  CHECK_INVARIANT(reactant, "bad molecule in reactants");
  reactant->clearAllAtomBookmarks();  // we use this as scratch space
  std::vector<MOL_SPTR_VECT> productMols;

  // if we have no products, return now:
  if (!rxn.getNumProductTemplates()) {
    return productMols;
  }

  CHECK_INVARIANT(static_cast<size_t>(reactantIdx) < rxn.getReactants().size(),
                  "reactantIdx out of bounds");
  // find the matches for each reactant:
  VectVectMatchVectType matchesByReactant;

  // assemble the reactants (use an empty mol for missing reactants)
  MOL_SPTR_VECT reactants(rxn.getNumReactantTemplates());
  for (size_t i = 0; i < rxn.getNumReactantTemplates(); ++i) {
    if (i == reactantIdx)
      reactants[i] = reactant;
    else
      reactants[i] = ROMOL_SPTR(new ROMol);
  }

  if (!ReactionRunnerUtils::getReactantMatches(
          reactants, rxn, matchesByReactant, reactantIdx)) {
    return productMols;
  }

  VectMatchVectType &matches = matchesByReactant[reactantIdx];
  // each match on a reactant is a seperate product
  VectVectMatchVectType matchesAtReactants(matches.size());
  for (size_t i = 0; i < matches.size(); ++i) {
    matchesAtReactants[i].resize(rxn.getReactants().size());
    matchesAtReactants[i][reactantIdx] = matches[i];
  }
  productMols.resize(matches.size());

  for (unsigned int productId = 0; productId != productMols.size();
       ++productId) {
    MOL_SPTR_VECT lProds = ReactionRunnerUtils::generateOneProductSet(
        rxn, reactants, matchesAtReactants[productId]);
    productMols[productId] = lProds;
  }

  return productMols;
}  // end of ChemicalReaction::runReactants()

namespace {
int getAtomMapNo(ROMol::ATOM_BOOKMARK_MAP *map, Atom *atom) {
  if (map) {
    for (ROMol::ATOM_BOOKMARK_MAP::const_iterator it = map->begin();
         it != map->end(); ++it) {
      for (auto ait = it->second.begin(); ait != it->second.end(); ++ait) {
        if (*ait == atom) return it->first;
      }
    }
  }
  return -1;
}
}  // namespace

namespace {
struct RGroup {
  Atom *rAtom;
  Bond::BondType bond_type;
  int mapno;
  RGroup(Atom *atom, Bond::BondType type, int curmapno = -1)
      : rAtom(atom), bond_type(type), mapno(curmapno) {}
  RGroup(const RGroup &rhs)
      : rAtom(rhs.rAtom), bond_type(rhs.bond_type), mapno(rhs.mapno) {}
};
}  // namespace
ROMol *reduceProductToSideChains(const ROMOL_SPTR &product,
                                 bool addDummyAtoms) {
  CHECK_INVARIANT(product, "bad molecule");
  auto *mol = new RWMol(*product.get());

  // CHECK_INVARIANT(productID < rxn.getProducts().size());

  // Remove all atoms belonging to the product UNLESS
  //  they are attached to the reactant (inverse r-group)
  const unsigned int numAtoms = mol->getNumAtoms();

  // Go backwards through the atoms so that removing atoms doesn't
  //  muck up the next atom in the loops index.
  std::vector<unsigned int> atomsToRemove;
  for (int scaffold_atom_idx = numAtoms - 1; scaffold_atom_idx >= 0;
       --scaffold_atom_idx) {
    Atom *scaffold_atom =
        mol->getAtomWithIdx(rdcast<unsigned int>(scaffold_atom_idx));
    // add map no's here from dummy atoms
    // was this atom in one of the reactant templates?
    if (scaffold_atom->hasProp(common_properties::reactionMapNum) ||
        !scaffold_atom->hasProp(common_properties::reactantAtomIdx)) {
      // are we attached to a reactant atom?
      ROMol::ADJ_ITER nbrIdx, endNbrs;
      boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(scaffold_atom);
      std::vector<RGroup> bonds_to_product;

      while (nbrIdx != endNbrs) {
        Atom *nbr = mol->getAtomWithIdx(*nbrIdx);
        if (!nbr->hasProp(common_properties::reactionMapNum) &&
            nbr->hasProp(common_properties::reactantAtomIdx)) {
          if (nbr->hasProp(WAS_DUMMY)) {
            bonds_to_product.push_back(RGroup(
                nbr,
                mol->getBondBetweenAtoms(scaffold_atom->getIdx(), *nbrIdx)
                    ->getBondType(),
                nbr->getProp<int>(common_properties::reactionMapNum)));
          } else {
            bonds_to_product.push_back(RGroup(
                nbr, mol->getBondBetweenAtoms(scaffold_atom->getIdx(), *nbrIdx)
                         ->getBondType()));
          }
        }

        ++nbrIdx;
      }

      // Search the atom bookmark to see if we can find the original
      //  reaction mapping number to the scaffold_atom
      //  sometimes this is a proper rgroup, so use that mapno
      // C-C:12 >> C:12 # will probably work
      //  C-C:12-C >>  C:12  # probably won't
      int mapno = -1;
      if (bonds_to_product.size()) {
        mapno = getAtomMapNo(mol->getAtomBookmarks(), scaffold_atom);
      }

      atomsToRemove.push_back(rdcast<unsigned int>(scaffold_atom_idx));

      if (bonds_to_product.size()) {
        if (addDummyAtoms) {
          // add dummy atom where the reaction scaffold would have been
          unsigned int idx = mol->addAtom();
          for (const auto &bi : bonds_to_product) {
            mol->addBond(idx, bi.rAtom->getIdx(), bi.bond_type);
            int atommapno = bi.mapno == -1 ? mapno : bi.mapno;

            if (atommapno) {
              Atom *at = mol->getAtomWithIdx(idx);
              PRECONDITION(at,
                           "Internal error in reduceProductToSideChains, bad "
                           "atom retrieval");
              at->setProp(common_properties::molAtomMapNumber, atommapno);
            }
          }
        } else {
          for (const auto &bi : bonds_to_product) {
            int atommapno = bi.mapno == -1 ? mapno : bi.mapno;
            if (mapno != -1) {
              std::vector<int> rgroups;
              std::vector<int> bonds;
              bi.rAtom->getPropIfPresent(common_properties::_rgroupAtomMaps,
                                         rgroups);
              bi.rAtom->getPropIfPresent(common_properties::_rgroupBonds,
                                         bonds);

              rgroups.push_back(atommapno);
              // XXX THIS MAY NOT BE SAFE
              bonds.push_back(static_cast<int>(bi.bond_type));
              bi.rAtom->setProp(common_properties::_rgroupAtomMaps, rgroups);
              bi.rAtom->setProp(common_properties::_rgroupBonds, bonds);
            }
          }
        }
      }
    }
  }

  for (unsigned int ai : atomsToRemove) {
    mol->removeAtom(ai);
  }
  return mol;
}

}  // namespace RDKit