File: Enumerate.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (438 lines) | stat: -rw-r--r-- 19,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//
//  Copyright (c) 2015, Novartis Institutes for BioMedical Research Inc.
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutues for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include <boost/python.hpp>
#include <RDBoost/Wrap.h>
#include <GraphMol/ChemReactions/Enumerate/RandomSample.h>
#include <GraphMol/ChemReactions/Enumerate/RandomSampleAllBBs.h>
#include <GraphMol/ChemReactions/Enumerate/EvenSamplePairs.h>
#include <GraphMol/ChemReactions/Enumerate/Enumerate.h>
#include <boost/python/stl_iterator.hpp>
#include <boost/cstdint.hpp>

namespace python = boost::python;


namespace RDKit {

template<class T>
std::vector<RDKit::MOL_SPTR_VECT> ConvertToVect(T bbs) {
  std::vector<RDKit::MOL_SPTR_VECT> vect;
  size_t num_bbs = python::extract<unsigned int>(bbs.attr("__len__")());
  vect.resize(num_bbs);
  for(size_t i=0; i<num_bbs; ++i) {
    unsigned int len1 = python::extract<unsigned int>(bbs[i].attr("__len__")());
    RDKit::MOL_SPTR_VECT &reacts = vect[i];
    reacts.reserve(len1);
    for(unsigned int j=0;j<len1;++j){
      RDKit::ROMOL_SPTR mol = python::extract<RDKit::ROMOL_SPTR>(bbs[i][j]);
      if(mol)
        reacts.push_back(mol);
      else {
        throw_value_error("reaction called with non molecule reactant");
      }
    }
  }
  return vect;
}


bool EnumerateLibraryBase__nonzero__(RDKit::EnumerateLibraryBase *base) {
  return static_cast<bool>(*base);
}
bool EnumerationStrategyBase__nonzero__(RDKit::EnumerationStrategyBase *base) {
  return static_cast<bool>(*base);
}

inline python::object pass_through(python::object const& o) { return o; }

PyObject *EnumerateLibraryBase__next__(RDKit::EnumerateLibraryBase *base) {
  if (!static_cast<bool>(*base)) {
    PyErr_SetString(PyExc_StopIteration, "Enumerations exhausted");
    boost::python::throw_error_already_set();
  }
  std::vector<RDKit::MOL_SPTR_VECT> mols;
  {
    NOGIL gil;
    mols = base->next();
  }
  PyObject *res=PyTuple_New(mols.size());

  for(unsigned int i=0;i<mols.size();++i){
    PyObject *lTpl =PyTuple_New(mols[i].size());
    for(unsigned int j=0;j<mols[i].size();++j){
      PyTuple_SetItem(lTpl,j,
                      python::converter::shared_ptr_to_python(mols[i][j]));
    }
    PyTuple_SetItem(res,i,lTpl);
  }
  return res;
}

python::object EnumerateLibraryBase_Serialize(const EnumerateLibraryBase &en) {
  std::string res = en.Serialize();
  python::object retval = python::object(
      python::handle<>(PyBytes_FromStringAndSize(res.c_str(), res.length())));
  return retval;
}

class EnumerateLibraryWrap : public RDKit::EnumerateLibrary {
public:
  EnumerateLibraryWrap() : RDKit::EnumerateLibrary() {}
  EnumerateLibraryWrap(const RDKit::ChemicalReaction &rxn, python::list ob,
                       const EnumerationParams & params = EnumerationParams()
                       ) :
      RDKit::EnumerateLibrary(rxn, ConvertToVect(ob), params) {
  }

  EnumerateLibraryWrap(const RDKit::ChemicalReaction &rxn, python::tuple ob,
                       const EnumerationParams & params = EnumerationParams()
                       ) :
      RDKit::EnumerateLibrary(rxn, ConvertToVect(ob), params) {
  }

  EnumerateLibraryWrap(const RDKit::ChemicalReaction &rxn, python::list ob,
                       const EnumerationStrategyBase &enumerator,
                       const EnumerationParams & params = EnumerationParams()
                       ) :
      RDKit::EnumerateLibrary(rxn, ConvertToVect(ob), enumerator, params) {
  }

  EnumerateLibraryWrap(const RDKit::ChemicalReaction &rxn, python::tuple ob,
                       const EnumerationStrategyBase &enumerator,
                       const EnumerationParams & params = EnumerationParams()) :
      RDKit::EnumerateLibrary(rxn, ConvertToVect(ob), enumerator, params) {
  }

};

namespace {
  template< typename T >
  inline
  std::vector< T > to_std_vector( const python::object& iterable )
  {
    return std::vector< T >( python::stl_input_iterator< T >( iterable ),
                             python::stl_input_iterator< T >( ) );
  }
}

void ToBBS(EnumerationStrategyBase &rgroup, ChemicalReaction &rxn, python::list ob) {
  rgroup.initialize(rxn, ConvertToVect(ob));
}

typedef std::vector<boost::uint64_t> VectSizeT;
typedef std::vector<std::vector<std::string> > VectStringVect;
typedef std::vector<MOL_SPTR_VECT > VectMolVect;

struct enumeration_wrapper {
  static void wrap() {
    std::string docString;
    python::class_<VectStringVect>("VectorOfStringVectors")
      .def(python::vector_indexing_suite<VectStringVect, false>() );

    python::class_<VectSizeT>("VectSizeT")
      .def(python::vector_indexing_suite<VectSizeT, false>() );

    python::class_<VectMolVect>("VectMolVect")
      .def(python::vector_indexing_suite<VectMolVect, false>() );

    python::class_<RDKit::EnumerateLibraryBase, RDKit::EnumerateLibraryBase *,
                   RDKit::EnumerateLibraryBase &, boost::noncopyable>(
        "EnumerateLibraryBase", python::no_init)
        .def("__nonzero__", &EnumerateLibraryBase__nonzero__)
        .def("__bool__", &EnumerateLibraryBase__nonzero__)
        .def("__iter__", &pass_through)
        .def("next", &EnumerateLibraryBase__next__,
             "Return the next molecule from the enumeration.")
        .def("__next__", &EnumerateLibraryBase__next__,
             "Return the next molecule from the enumeration.")
        .def("nextSmiles", &RDKit::EnumerateLibraryBase::nextSmiles,
             "Return the next smiles string from the enumeration.")
        .def("Serialize", &EnumerateLibraryBase_Serialize,
             "Serialize the library to a binary string.\n"
             "Note that the position in the library is serialized as well.  Care should\n"
             "be taken when serializing.  See GetState/SetState for position manipulation.")
        .def("InitFromString", &RDKit::EnumerateLibraryBase::initFromString,
             python::arg("data"),
             "Inititialize the library from a binary string")
        .def("GetPosition", &RDKit::EnumerateLibraryBase::getPosition,
             "Returns the current enumeration position into the reagent vectors",
             python::return_internal_reference<
             1, python::with_custodian_and_ward_postcall<0, 1> >())
        .def("GetState", &RDKit::EnumerateLibraryBase::getState,
             "Returns the current enumeration state (position) of the library.\n"
             "This position can be used to restart the library from a known position")
        .def("SetState", &RDKit::EnumerateLibraryBase::setState,
             python::arg("state"),
             "Sets the enumeration state (position) of the library.")
        .def("ResetState", &RDKit::EnumerateLibraryBase::resetState,
             "Returns the current enumeration state (position) of the library to the start.")
        .def("GetReaction", &RDKit::EnumerateLibraryBase::getReaction,
             "Returns the chemical reaction for this library",
             python::return_internal_reference<
             1, python::with_custodian_and_ward_postcall<0, 1> >())
        .def("GetEnumerator", &RDKit::EnumerateLibraryBase::getEnumerator,
             "Returns the enumation strategy for the current library",
             python::return_internal_reference<
             1, python::with_custodian_and_ward_postcall<0, 1> >());

    docString = \
"EnumerationParams\n\
Controls some aspects of how the enumeration is performed.\n\
Options:\n\
  reagentMaxMatchCount [ default Infinite ]\n\
    This specifies how many times the reactant template can match a reagent.\n\
\n\
  sanePartialProducts [default false]\n\
    If true, forces all products of the reagent plus the product templates\n\
     pass chemical sanitization.  Note that if the product template itself\n\
     does not pass sanitization, then none of the products will.\n\
";

    python::class_<RDKit::EnumerationParams,
                   RDKit::EnumerationParams*,
                   RDKit::EnumerationParams&>("EnumerationParams",
                                              docString.c_str(),
                                              python::init<>())
        .def_readwrite("reagentMaxMatchCount",
                    &RDKit::EnumerationParams::reagentMaxMatchCount)
        .def_readwrite("sanePartialProducts",
                    &RDKit::EnumerationParams::sanePartialProducts);

    docString = \
"EnumerateLibrary\n\
This class allows easy enumeration of reactions.  Simply provide a reaction\n\
and a set of reagents and you are off the the races.\n\
\n\
Note that this functionality should be considered beta and that the API may\n\
change in a future release.\n\
\n\
EnumerateLibrary follows the python enumerator protocol, for example:\n\
\n\
library = EnumerateLibrary(rxn, bbs)\n\
for products in library:\n\
   ... do something with the product\n\
\n\
It is useful to sanitize reactions before hand:\n\
\n\
SanitizeRxn(rxn)\n\
library = EnumerateLibrary(rxn, bbs)\n\
\n\
If ChemDraw style reaction semantics are prefereed, you can apply\n\
the ChemDraw parameters:\n\
\n\
SanitizeRxn(rxn, params=GetChemDrawRxnAdjustParams())\n\
\n\
For one, this enforces only matching RGroups and assumes all atoms\n\
have fully satisfied valences.\n\
\n\
Each product has the same output as applying a set of reagents to\n\
the libraries reaction.\n\
\n\
This can be a bit confusing as each product can have multiple molecules\n\
generated.  The returned data structure is as follows:\n\
\n\
   [ [products1], [products2],... ]\n\
Where products1 are the molecule products for the reactions first product\n\
template and products2 are the molecule products for the second product\n\
template.  Since each reactant can match more than once, there may be\n\
multiple product molecules for each template.\n\
\n\
for result in library:\n\
    for results_for_product_template in products:\n\
        for mol in results_for_product_template:\n\
            Chem.MolToSmiles(mol) # finally have a molecule!\n\
\n\
For sufficiently large libraries, using this iteration strategy is not\n\
recommended as the library may contain more products than atoms in the\n\
universe.  To help with this, you can supply an enumeration strategy.\n\
The default strategy is a CartesianProductStrategy which enumerates\n\
everything.  RandomSampleStrategy randomly samples the products but\n\
this strategy never terminates, however, python supplies itertools:\n\
\n\
import itertools\n\
library = EnumerateLibrary(rxn, bbs, rdChemReactions.RandomSampleStrategy())\n\
for result in itertools.islice(libary, 1000):\n\
    # do something with the first 1000 samples\n\
\n\
for result in itertools.islice(libary, 1000):\n\
    # do something with the next 1000 samples\n\
\n\
Libraries are also serializable, including their current state:\n\
\n\
s = library.Serialize()\n\
library2 = EnumerateLibrary()\n\
library2.InitFromString(s)\n\
for result in itertools.islice(libary2, 1000):\n\
    # do something with the next 1000 samples\n\
";
    python::class_<EnumerateLibraryWrap,
                   EnumerateLibraryWrap*,EnumerateLibraryWrap&,
                   python::bases<RDKit::EnumerateLibraryBase> >(
                       "EnumerateLibrary", docString.c_str(),
                       python::init<>())
      .def(python::init<
           const RDKit::ChemicalReaction &,
           python::list,
           python::optional<const RDKit::EnumerationParams&>
           >(python::args("rxn", "reagents", "params")))
      .def(python::init<
           const RDKit::ChemicalReaction &,
           python::tuple,
           python::optional<const RDKit::EnumerationParams&>
           >(python::args("rxn", "reagents", "params")))

      .def(python::init<const RDKit::ChemicalReaction &,
           python::list,
           const RDKit::EnumerationStrategyBase &,
           python::optional<const RDKit::EnumerationParams&>
           >(python::args(
               "rxn", "reagents", "enumerator", "params")))
      .def(python::init<const RDKit::ChemicalReaction &,
           python::tuple,
           const RDKit::EnumerationStrategyBase &,
           python::optional<const RDKit::EnumerationParams&>
           >(python::args(
               "rxn", "reagents", "enumerator", "params")))

      .def("GetReagents", &RDKit::EnumerateLibrary::getReagents,
           "Return the reagents used in this library.",
           python::return_internal_reference<
           1, python::with_custodian_and_ward_postcall<0, 1> >())
      ;

    //iterator_wrappers<EnumerateLibrary>().wrap("EnumerateLibraryIterator");

    python::class_<RDKit::EnumerationStrategyBase,
                   RDKit::EnumerationStrategyBase *,
                   RDKit::EnumerationStrategyBase &, boost::noncopyable>(
        "EnumerationStrategyBase", python::no_init)
        .def("__nonzero__", &EnumerationStrategyBase__nonzero__)
        .def("__bool__", &EnumerationStrategyBase__nonzero__)
        .def("Type", &EnumerationStrategyBase::type,
             "Returns the enumeration strategy type as a string.")
        .def("Skip", &EnumerationStrategyBase::skip,
             python::args("skipCount"),
             "Skip the next Nth results. note: this may be an expensive "
             "operation\n"
             "depending on the enumeration strategy used. It is recommended to "
             "use\n"
             "the enumerator state to advance to a known position")
        .def("__copy__", python::pure_virtual(&EnumerationStrategyBase::copy),
             python::return_value_policy<python::manage_new_object>())
        .def("GetNumPermutations", &EnumerationStrategyBase::getNumPermutations,
             "Returns the total number of results for this enumeration strategy.\n"
             "Note that some strategies are effectively infinite.")
        .def("GetPosition", &EnumerationStrategyBase::getPosition,
             "Return the current indices into the arrays of reagents",
             python::return_internal_reference<
                 1, python::with_custodian_and_ward_postcall<0, 1> >())
        .def("next", python::pure_virtual(&EnumerationStrategyBase::next),
             "Return the next indices into the arrays of reagents",
             python::return_internal_reference<
                 1, python::with_custodian_and_ward_postcall<0, 1> >())
        .def("__next__", python::pure_virtual(&EnumerationStrategyBase::next),
             "Return the next indices into the arrays of reagents",
             python::return_internal_reference<
                 1, python::with_custodian_and_ward_postcall<0, 1> >())
        .def("Initialize", ToBBS);

    docString = "CartesianProductStrategy produces a standard walk through all possible\n"
        "reagent combinations:\n"
        "\n"
        "(0,0,0), (1,0,0), (2,0,0) ...\n";

    python::class_<RDKit::CartesianProductStrategy,
                   RDKit::CartesianProductStrategy*,
                   RDKit::CartesianProductStrategy&,
                   python::bases<EnumerationStrategyBase> >("CartesianProductStrategy",
                                                            docString.c_str(),
                                                            python::init<>())
        .def("__copy__", &RDKit::CartesianProductStrategy::copy,
             python::return_value_policy<python::manage_new_object>())
      ;

    docString = "RandomSampleStrategy simply randomly samples from the reagent sets.\n"
        "Note that this strategy never halts and can produce duplicates.";
    python::class_<RDKit::RandomSampleStrategy,
                   RDKit::RandomSampleStrategy*,
                   RDKit::RandomSampleStrategy&,
                   python::bases<EnumerationStrategyBase> >("RandomSampleStrategy",
                                                            docString.c_str(),
                                                            python::init<>())
        .def("__copy__", &RDKit::RandomSampleStrategy::copy,
             python::return_value_policy<python::manage_new_object>())
      ;

    docString = "RandomSampleAllBBsStrategy randomly samples from the reagent sets\n"
        "with the constraint that all building blocks are samples as early as possible.\n"
        "Note that this strategy never halts and can produce duplicates.";
    python::class_<RDKit::RandomSampleAllBBsStrategy,
                   RDKit::RandomSampleAllBBsStrategy*,
                   RDKit::RandomSampleAllBBsStrategy&,
                   python::bases<EnumerationStrategyBase> >("RandomSampleAllBBsStrategy",
                                                            docString.c_str(),
                                                            python::init<>())
        .def("__copy__", &RDKit::RandomSampleAllBBsStrategy::copy,
             python::return_value_policy<python::manage_new_object>())
      ;

    docString = "Randomly sample Pairs evenly from a collection of building blocks\n"
        "This is a good strategy for choosing a relatively small selection\n"
        "of building blocks from a larger set.  As the amount of work needed\n"
        "to retrieve the next evenly sample building block grows with the\n"
        "number of samples, this method performs progressively worse as the\n"
        "number of samples gets larger.\n"
        "See EnumerationStrategyBase for more details.\n";

    python::class_<RDKit::EvenSamplePairsStrategy,
                   RDKit::EvenSamplePairsStrategy*,
                   RDKit::EvenSamplePairsStrategy&,
                   python::bases<EnumerationStrategyBase> >("EvenSamplePairsStrategy",
                                                            docString.c_str(),
                                                            python::init<>())
        .def("__copy__", &RDKit::EvenSamplePairsStrategy::copy,
             python::return_value_policy<python::manage_new_object>())
        .def("Stats", &RDKit::EvenSamplePairsStrategy::stats,
             "Return the a statisics log of the pairs used in the current enumeration.")
      ;

    python::def("EnumerateLibraryCanSerialize", EnumerateLibraryCanSerialize,
                "Returns True if the EnumerateLibrary is serializable "
                "(requires boost serialization");

  }
};

}// end of namespace

void wrap_enumeration() {
  RDKit::enumeration_wrapper::wrap();
}