1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
// $Id$
//
// Copyright (C) 2003-2010 greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <RDGeneral/types.h>
#include <math.h>
#include <Geometry/point.h>
#include <Geometry/Transform2D.h>
#include "DepictUtils.h"
#include <iostream>
#include <RDGeneral/Invariant.h>
#include <algorithm>
namespace RDDepict {
double BOND_LEN = 1.5;
double COLLISION_THRES = 0.70;
double BOND_THRES = 0.50;
double ANGLE_OPEN = 0.1222; // that is about 7 deg
unsigned int MAX_COLL_ITERS = 15;
double HETEROATOM_COLL_SCALE = 1.3;
unsigned int NUM_BONDS_FLIPS = 3;
RDGeom::INT_POINT2D_MAP embedRing(const RDKit::INT_VECT &ring) {
// The process here is very straight forward
// we take the center of the ring to lies at the origin put the first
// point at the orgin anf then sweep
// anticlock wise so by an angle A = 360/n for the next point
// the length of the arm (l) we want to sweep is easy to compute given the
// bond lenght (b) we want to use for each bond in the ring (for now
// we will assume that this bond legnth is the same for all bonds in the ring
// l = b/sqrt(2*(1 - cos(A))
// the above formular derives from the traingle formula, where side 'c' is
// given
// interms of sides 'a' and 'b' as
// c = a^2 + b^2 - 2.a.b.cos(A)
// where A is the angle between a and b
// compute the sweep angle
unsigned int na = ring.size();
double ang = 2 * M_PI / na;
// compute the arm length
double al = BOND_LEN / (sqrt(2 * (1 - cos(ang))));
RDGeom::INT_POINT2D_MAP res;
unsigned int i, aid;
double x, y;
for (i = 0; i < na; i++) {
x = al * cos(i * ang);
y = al * sin(i * ang);
RDGeom::Point2D loc(x, y);
aid = ring[i];
res[aid] = loc;
}
return res;
}
void transformPoints(RDGeom::INT_POINT2D_MAP &nringCor,
const RDGeom::Transform2D &trans) {
RDGeom::INT_POINT2D_MAP_I nrci;
for (nrci = nringCor.begin(); nrci != nringCor.end(); nrci++) {
RDGeom::Point2D loc = nrci->second;
trans.TransformPoint(loc);
nrci->second = loc;
}
}
RDGeom::Point2D computeBisectPoint(const RDGeom::Point2D &rcr, double ang,
const RDGeom::Point2D &nb1,
const RDGeom::Point2D &nb2) {
RDGeom::Point2D cloc = nb1;
cloc += nb2;
cloc *= 0.5;
if (ang > M_PI) {
// invert the cloc
cloc -= rcr;
cloc *= -1.0;
cloc += rcr;
}
return cloc;
}
RDGeom::Point2D reflectPoint(const RDGeom::Point2D &point,
const RDGeom::Point2D &loc1,
const RDGeom::Point2D &loc2) {
RDGeom::Point2D org(0.0, 0.0);
RDGeom::Point2D xaxis(1.0, 0.0);
RDGeom::Point2D cent = (loc1 + loc2);
cent *= 0.5;
RDGeom::Transform2D trans;
trans.SetTransform(org, xaxis, cent, loc1);
/// reverse transform
RDGeom::Transform2D itrans;
itrans.SetTransform(cent, loc1, org, xaxis);
RDGeom::INT_POINT2D_MAP_I nci;
RDGeom::Point2D res;
res = point;
trans.TransformPoint(res);
res.y = -res.y;
itrans.TransformPoint(res);
return res;
}
void reflectPoints(RDGeom::INT_POINT2D_MAP &coordMap,
const RDGeom::Point2D &loc1, const RDGeom::Point2D &loc2) {
RDGeom::INT_POINT2D_MAP_I nci;
for (nci = coordMap.begin(); nci != coordMap.end(); nci++) {
nci->second = reflectPoint(nci->second, loc1, loc2);
}
}
RDKit::INT_VECT setNbrOrder(unsigned int aid, const RDKit::INT_VECT &nbrs,
const RDKit::ROMol &mol) {
PRECONDITION(aid < mol.getNumAtoms(), "");
PR_QUEUE subsAid;
int ref = -1;
RDKit::ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(mol.getAtomWithIdx(aid));
// find the neighbor of aid that is not in nbrs i.e. atom A from the comments
// in the header file
// and the store the pair <degree, aid> in the order of increasing degree
while (nbrIdx != endNbrs) {
// We used to use degree here instead we will start using the CIP rank here
if (std::find(nbrs.begin(), nbrs.end(), static_cast<int>(*nbrIdx)) ==
nbrs.end()) {
ref = (*nbrIdx);
}
nbrIdx++;
}
RDKit::INT_VECT thold = nbrs;
if (ref >= 0) {
thold.push_back(ref);
}
// we should be here unless we have more than 3 atoms to worry about
CHECK_INVARIANT(thold.size() > 3, "");
thold = rankAtomsByRank(mol, thold);
// swap the position of the 3rd to last and second to last items in sorted
// list
unsigned int ln = thold.size();
int tint = thold[ln - 3];
thold[ln - 3] = thold[ln - 2];
thold[ln - 2] = tint;
// go clock wise along the list from this position for the arranged neighbor
// list
RDKit::INT_VECT res;
res.reserve(thold.size());
auto pos = std::find(thold.begin(), thold.end(), ref);
if (pos != thold.end()) {
res.insert(res.end(), pos + 1, thold.end());
}
if (pos != thold.begin()) {
res.insert(res.end(), thold.begin(), pos);
}
POSTCONDITION(res.size() == nbrs.size(), "");
return res;
}
int pickFirstRingToEmbed(const RDKit::ROMol &mol,
const RDKit::VECT_INT_VECT &fusedRings) {
// ok this is what we will do here
// we will pick the ring with the smallest number of substiuents
int res = -1;
unsigned int maxSize = 0;
int subs, minsubs = static_cast<int>(1e8);
int cnt = 0;
for (const auto &fusedRing : fusedRings) {
subs = 0;
for (auto rii : fusedRing) {
int deg = mol.getAtomWithIdx(rii)->getDegree();
if (deg > 2) {
subs++;
}
}
if (subs < minsubs) {
res = cnt;
minsubs = subs;
maxSize = fusedRing.size();
} else if (subs == minsubs) {
if (fusedRing.size() > maxSize) {
res = cnt;
maxSize = fusedRing.size();
}
}
cnt++;
}
return res;
}
RDKit::INT_VECT findNextRingToEmbed(const RDKit::INT_VECT &doneRings,
const RDKit::VECT_INT_VECT &fusedRings,
int &nextId) {
// REVIEW: We are changing this after Issue166
// Originally the ring that have maximum number of atoms in common with the
// atoms
// that have already been embedded will be the ring that will get embedded.
// But
// if we can find a ring with two atoms in common with the embedded atoms, we
// will
// choose that first before systems with more than 2 atoms in common. Cases
// with two atoms
// in common are in general flat systems to start with and can be embedded
// cleanly.
// when there are more than 2 atoms in common, these are most likely bridged
// syste, which are
// screwed up anyway, might as well screw them up later
// if we do not have a system with two rings in common then we will return the
// ring with max,
// common atoms
PRECONDITION(doneRings.size() > 0, "");
PRECONDITION(fusedRings.size() > 1, "");
RDKit::INT_VECT commonAtoms, res, doneAtoms, notDone;
RDKit::INT_VECT_CI dri;
for (unsigned int i = 0; i < fusedRings.size(); i++) {
if (std::find(doneRings.begin(), doneRings.end(), static_cast<int>(i)) ==
doneRings.end()) {
notDone.push_back(i);
}
}
RDKit::Union(fusedRings, doneAtoms, ¬Done);
int maxCommonAtoms = 0;
int currRingId = 0;
for (const auto &fusedRing : fusedRings) {
if (std::find(doneRings.begin(), doneRings.end(), currRingId) !=
doneRings.end()) {
currRingId++;
continue;
}
commonAtoms.clear();
int numCommonAtoms = 0;
for (auto rii : fusedRing) {
if (std::find(doneAtoms.begin(), doneAtoms.end(), (rii)) !=
doneAtoms.end()) {
commonAtoms.push_back(rii);
numCommonAtoms++;
}
}
if (numCommonAtoms == 2) {
// if we found a ring with two atoms in common get out
nextId = currRingId;
return commonAtoms; // FIX: this causes the rendering to be non-canonical
}
if (numCommonAtoms > maxCommonAtoms) {
maxCommonAtoms = numCommonAtoms;
nextId = currRingId;
res = commonAtoms;
}
currRingId++;
}
// here is an additional constrain we will put on the common atoms
// it is quite likely that the common atoms form a chain (it is possible we
// can
// construct some weird cases where this does not hold true - but for now we
// will
// assume this is true. However the IDs in the res may not be in the order of
// going
// from one end of the chain to the other - here is an example
// C1CCC(CC12)CCC2 - two rings here with three atoms in common
// let ring1:(0,1,2,3,4,5) be a ring that is already embedded, then let
// ring2:(4,3,6,7,8,5) be the ring
// that we found to be the next ring we should embed. The commonAtoms are
// (4,3,5) - note that
// they will be in this order since the rings are always traversed in order.
// Now we would like these
// common atoms to be returned in the order (5,4,3) - then we have a
// continuous chain, we can
// do this by simply looking at the original ring order (4,3,6,7,8,5) and
// observing that 5 need to come to
// the front
// find out how many atoms from the end we need to move to the front
unsigned int cmnLst = 0;
unsigned int nCmn = res.size();
for (unsigned int i = 0; i < nCmn; i++) {
if (res[i] == fusedRings[nextId][i]) {
cmnLst++;
} else {
break;
}
}
// now do the moving if we have to
if ((cmnLst > 0) && (cmnLst < res.size())) {
RDKit::INT_VECT tempV = res;
for (unsigned int i = cmnLst; i < nCmn; i++) {
res[i - cmnLst] = tempV[i];
}
unsigned int nMov = nCmn - cmnLst;
for (unsigned int i = 0; i < cmnLst; i++) {
res[nMov + i] = tempV[i];
}
}
POSTCONDITION(res.size() > 0, "");
return res;
}
RDKit::INT_VECT getAllRotatableBonds(const RDKit::ROMol &mol) {
RDKit::INT_VECT res;
RDKit::ROMol::ConstBondIterator bondIt;
for (bondIt = mol.beginBonds(); bondIt != mol.endBonds(); bondIt++) {
int bid = (*bondIt)->getIdx();
if (((*bondIt)->getStereo() <= RDKit::Bond::STEREOANY) &&
(!(mol.getRingInfo()->numBondRings(bid)))) {
res.push_back(bid);
}
}
return res;
}
RDKit::INT_VECT getRotatableBonds(const RDKit::ROMol &mol, unsigned int aid1,
unsigned int aid2) {
PRECONDITION(aid1 < mol.getNumAtoms(), "");
PRECONDITION(aid2 < mol.getNumAtoms(), "");
RDKit::INT_LIST path = RDKit::MolOps::getShortestPath(mol, aid1, aid2);
RDKit::INT_VECT res;
if (path.size() >= 4) {
// remove the first atom (aid1) and last atom (aid2)
CHECK_INVARIANT(static_cast<unsigned int>(path.front()) == aid1,
"bad first element");
path.pop_front();
CHECK_INVARIANT(static_cast<unsigned int>(path.back()) == aid2,
"bad last element");
path.pop_back();
RDKit::INT_LIST_CI pi = path.begin();
int pid = (*pi);
++pi;
while (pi != path.end()) {
int aid = (*pi);
const RDKit::Bond *bond = mol.getBondBetweenAtoms(pid, aid);
int bid = bond->getIdx();
if ((bond->getStereo() <= RDKit::Bond::STEREOANY) &&
(!(mol.getRingInfo()->numBondRings(bid)))) {
res.push_back(bid);
}
pid = aid;
++pi;
}
}
return res;
}
void getNbrAtomAndBondIds(unsigned int aid, const RDKit::ROMol *mol,
RDKit::INT_VECT &aids, RDKit::INT_VECT &bids) {
CHECK_INVARIANT(mol, "");
unsigned int na = mol->getNumAtoms();
URANGE_CHECK(aid, na);
RDKit::ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(mol->getAtomWithIdx(aid));
unsigned int ai, bi;
while (nbrIdx != endNbrs) {
ai = (*nbrIdx);
bi = mol->getBondBetweenAtoms(aid, ai)->getIdx();
aids.push_back(ai);
bids.push_back(bi);
nbrIdx++;
}
}
// find pairs of bonds that can be permuted at a non-ring degree 4
// node. This function will return only those pairs that cannot be
// permuted by flipping a rotatble bond
//
// D
// |
// b3
// |
// A-b1-B-b2-C
// |
// b4
// |
// E
// For example in teh above situation on the pairs (b1, b3) and (b1, b4) will be
// returned
// All other permutations can be achieved via a rotatable bond flip.
INT_PAIR_VECT findBondsPairsToPermuteDeg4(const RDGeom::Point2D ¢er,
const RDKit::INT_VECT &nbrBids,
const VECT_C_POINT &nbrLocs) {
INT_PAIR_VECT res;
// make sure there are four of them
CHECK_INVARIANT(nbrBids.size() == 4, "");
CHECK_INVARIANT(nbrLocs.size() == 4, "");
VECT_C_POINT::const_iterator npi;
std::vector<RDGeom::Point2D> nbrPts;
RDKit::INT_VECT_CI aci;
for (npi = nbrLocs.begin(); npi != nbrLocs.end(); npi++) {
RDGeom::Point2D v = (*(*npi)) - center;
nbrPts.push_back(v);
}
// now find the lay out of the bonds and return the bonds that are 90deg to
// the
// the bond to the first neighbor; i.e. we want to find b3 and b4 in the above
// picture
double dp1 = nbrPts[0].dotProduct(nbrPts[1]);
if (fabs(dp1) < 1.e-3) {
// the first two vectors are perpendicular to each other. We now have b1 and
// b3 we need to
// find b4
INT_PAIR p1(nbrBids[0], nbrBids[1]);
res.push_back(p1);
double dp2 = nbrPts[0].dotProduct(nbrPts[2]);
if (fabs(dp2) < 1.e-3) {
// now we found b4 as well return the results
INT_PAIR p2(nbrBids[0], nbrBids[2]);
res.push_back(p2);
} else {
// bids[0] and bids[2] are opposite to each other and we know bids[1] is
// perpendicular to bids[0]. So bids[3] is also perpendicular to bids[0]
INT_PAIR p2(nbrBids[0], nbrBids[3]);
res.push_back(p2);
}
return res;
} else {
// bids[0] and bids[1] are oppostie to each other, so bids[2] and bids[3]
// must
// be perpendicular to bids[0]
INT_PAIR p1(nbrBids[0], nbrBids[2]);
res.push_back(p1);
INT_PAIR p2(nbrBids[0], nbrBids[3]);
res.push_back(p2);
return res;
}
}
// compare the first elements of two pairs of integers/
int _pairCompDescending(const INT_PAIR &arg1, const INT_PAIR &arg2) {
return (arg1.first != arg2.first ? arg1.first > arg2.first
: arg1.second > arg2.second);
}
int _pairCompAscending(const INT_PAIR &arg1, const INT_PAIR &arg2) {
return (arg1.first != arg2.first ? arg1.first < arg2.first
: arg1.second < arg2.second);
}
template <class T>
T rankAtomsByRank(const RDKit::ROMol &mol, const T &commAtms, bool ascending) {
size_t natms = commAtms.size();
INT_PAIR_VECT rankAid;
rankAid.reserve(natms);
T res;
typename T::const_iterator ci;
for (ci = commAtms.begin(); ci != commAtms.end(); ci++) {
unsigned int rank;
const RDKit::Atom *at = mol.getAtomWithIdx(*ci);
if (at->hasProp(RDKit::common_properties::_CIPRank)) {
at->getProp(RDKit::common_properties::_CIPRank, rank);
} else {
rank = mol.getNumAtoms() * getAtomDepictRank(at) + (*ci);
}
rankAid.push_back(std::make_pair(rank, (*ci)));
}
if (ascending) {
std::stable_sort(rankAid.begin(), rankAid.end(), _pairCompAscending);
} else {
std::stable_sort(rankAid.begin(), rankAid.end(), _pairCompDescending);
}
INT_PAIR_VECT_CI rai;
for (rai = rankAid.begin(); rai != rankAid.end(); rai++) {
res.push_back(rai->second);
}
return res;
}
template RDKit::INT_VECT rankAtomsByRank(const RDKit::ROMol &mol,
const RDKit::INT_VECT &commAtms,
bool ascending);
template RDKit::INT_DEQUE rankAtomsByRank(const RDKit::ROMol &mol,
const RDKit::INT_DEQUE &commAtms,
bool ascending);
template RDKit::INT_LIST rankAtomsByRank(const RDKit::ROMol &mol,
const RDKit::INT_LIST &commAtms,
bool ascending);
}
|