1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
//
// Copyright (C) 2003-2010 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <RDGeneral/export.h>
#ifndef _RD_DEPICT_UTILS_H_
#define _RD_DEPICT_UTILS_H_
// REVIEW: remove extra headers here
#include <RDGeneral/types.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/RWMol.h>
#include <GraphMol/ROMol.h>
#include <Geometry/Transform2D.h>
#include <Geometry/point.h>
#include <queue>
namespace RDDepict {
RDKIT_DEPICTOR_EXPORT extern double BOND_LEN;
RDKIT_DEPICTOR_EXPORT extern double COLLISION_THRES;
RDKIT_DEPICTOR_EXPORT extern double BOND_THRES;
RDKIT_DEPICTOR_EXPORT extern double ANGLE_OPEN;
RDKIT_DEPICTOR_EXPORT extern unsigned int MAX_COLL_ITERS;
RDKIT_DEPICTOR_EXPORT extern double HETEROATOM_COLL_SCALE;
RDKIT_DEPICTOR_EXPORT extern unsigned int NUM_BONDS_FLIPS;
typedef std::vector<const RDGeom::Point2D *> VECT_C_POINT;
typedef std::pair<int, int> PAIR_I_I;
typedef std::vector<PAIR_I_I> VECT_PII;
struct RDKIT_DEPICTOR_EXPORT gtIIPair {
bool operator()(const PAIR_I_I &pd1, const PAIR_I_I &pd2) const {
return pd1.first > pd2.first;
}
};
typedef std::priority_queue<PAIR_I_I, VECT_PII, gtIIPair> PR_QUEUE;
typedef std::pair<double, PAIR_I_I> PAIR_D_I_I;
typedef std::list<PAIR_D_I_I> LIST_PAIR_DII;
//! Some utility functions used in generating 2D coordinates
//! Embed a ring as a convex polygon in 2D
/*!
The process here is very straightforward:
We take the center of the ring to lie at the origin, so put the first
point at the origin and then sweep
anti-clockwise by an angle A = 360/n for the next point.
The length of the arm (l) we want to sweep is easy to compute given the
bond length (b) we want to use for each bond in the ring (for now
we will assume that this bond legnth is the same for all bonds in the ring:
l = b/sqrt(2*(1 - cos(A))
the above formula derives from the triangle formula, where side 'c' is given
in terms of sides 'a' and 'b' as:
c = a^2 + b^2 - 2.a.b.cos(A)
where A is the angle between a and b
*/
RDKIT_DEPICTOR_EXPORT RDGeom::INT_POINT2D_MAP embedRing(const RDKit::INT_VECT &ring);
RDKIT_DEPICTOR_EXPORT void transformPoints(RDGeom::INT_POINT2D_MAP &nringCor,
const RDGeom::Transform2D &trans);
//! Find a point that bisects the angle at rcr
/*!
The new point lies between nb1 and nb2. The line (rcr, newPt) bisects the
angle
'ang' at rcr
*/
RDKIT_DEPICTOR_EXPORT RDGeom::Point2D computeBisectPoint(const RDGeom::Point2D &rcr, double ang,
const RDGeom::Point2D &nb1,
const RDGeom::Point2D &nb2);
//! Reflect a set of point through a the line joining two point
/*!
ARGUMENTS:
\param coordMap a map of <int, point2D> going from atom id to current
coordinates of the points that need to be reflected:
The coordinates are overwritten
\param loc1 the first point of the line that is to be used as a
mirror
\param loc2 the second point of the line to be used as a mirror
*/
RDKIT_DEPICTOR_EXPORT void reflectPoints(RDGeom::INT_POINT2D_MAP &coordMap,
const RDGeom::Point2D &loc1, const RDGeom::Point2D &loc2);
RDKIT_DEPICTOR_EXPORT RDGeom::Point2D reflectPoint(const RDGeom::Point2D &point,
const RDGeom::Point2D &loc1,
const RDGeom::Point2D &loc2);
//! Set the neighbors yet to added to aid such that the atoms with the most subs
// fall on opposite sides
/*!
Ok this needs some explanation
- Let A, B, C, D be the substituent on the central atom X (given
by atom index aid)
- also let A be the atom that is already embedded
- Now we want the order in which the remaining neighbors B,C,D are
added to X such that the atoms with atom with largest number of
substituent fall on opposite sides of X so as to minimize atom
clashes later in the depiction
E.g. let say we have the following situation
<pre>
B
| |
A--X--C
| |
--D--
|
</pre>
In this case the the number substituent of A, B, C, D are 3, 1, 1,
4 respectively so want to A and D to go opposite sides and so that
we draw
<pre>
B
| | |
A--X--D--
| | |
C
</pre>
And the correct ordering of the neighbors is B,D,C
*/
RDKIT_DEPICTOR_EXPORT RDKit::INT_VECT setNbrOrder(unsigned int aid, const RDKit::INT_VECT &nbrs,
const RDKit::ROMol &mol);
//! \brief From a given set of rings find the ring the largest common elements
// with other rings
/*
Bit of a weird function - this is typically called once we have embedded some
of the
rings in a fused system and we are looking for the ring that must be embedded
(or merged)
next. The heuristic used here is to pick the rings with the maximum number of
atoms
in common with the rings that are already embedded.
\param doneRings a vertor of ring IDs that have been embedded already
\param fusedRings list of all the rings in the the fused system
\param nextId this is where the ID for the next ring is written
\return list of atom ids that are common
*/
RDKIT_DEPICTOR_EXPORT RDKit::INT_VECT findNextRingToEmbed(const RDKit::INT_VECT &doneRings,
const RDKit::VECT_INT_VECT &fusedRings,
int &nextId);
typedef std::pair<int, int> INT_PAIR;
typedef std::vector<INT_PAIR> INT_PAIR_VECT;
typedef INT_PAIR_VECT::const_iterator INT_PAIR_VECT_CI;
typedef std::pair<double, INT_PAIR> DOUBLE_INT_PAIR;
//! Sort a list of atoms by their CIP rank
/*!
\param mol molecule of interest
\param commAtms atoms that need to be ranked
\param ascending sort to an ascending order or a descending order
*/
template <class T>
RDKIT_DEPICTOR_EXPORT T rankAtomsByRank(const RDKit::ROMol &mol, const T &commAtms,
bool ascending = true);
//! computes a subangle for an atom of given hybridization and degree
/*!
\param degree the degree of the atom (number of neighbors)
\param htype the atom's hybridization
\return the subangle (in radians)
*/
inline double computeSubAngle(unsigned int degree,
RDKit::Atom::HybridizationType htype) {
double angle = M_PI;
switch (htype) {
case RDKit::Atom::UNSPECIFIED:
case RDKit::Atom::SP3:
if (degree == 4) {
angle = M_PI / 2;
} else {
angle = 2 * M_PI / 3;
}
break;
case RDKit::Atom::SP2:
angle = 2 * M_PI / 3;
break;
default:
angle = 2. * M_PI / degree;
}
return angle;
}
//! computes the rotation direction between two vectors
/*!
Let:
v1 = loc1 - center
v2 = loc2 - center
If remaining angle(v1, v2) is < 180 and corss(v1, v2) > 0.0 then the rotation
dir is +1.0
else if remAngle(v1, v2) is > 180 and cross(v1, v2) < 0.0 then rotation dir is
-1.0
else if remAngle(v1, v2) is < 180 and cross(v1, v2) < 0.0 then rotation dir is
-1.0
finally if remAngle(v1, v2) is > 180 and cross(v1, v2) < 0.0 then rotation dir
is +1.0
\param center the common point
\param loc1 endpoint 1
\param loc2 endpoint 2
\param remAngle the remaining angle about center in radians
\return the rotation direction (1 or -1)
*/
inline int rotationDir(const RDGeom::Point2D ¢er,
const RDGeom::Point2D &loc1, const RDGeom::Point2D &loc2,
double remAngle) {
RDGeom::Point2D pt1 = loc1 - center;
RDGeom::Point2D pt2 = loc2 - center;
double cross = pt1.x * pt2.y - pt1.y * pt2.x;
double diffAngle = M_PI - remAngle;
cross *= diffAngle;
if (cross >= 0.0) {
return -1;
} else {
return 1;
}
}
//! computes and return the normal of a vector between two points
/*!
\param center the common point
\param other the endpoint
\return the normal
*/
inline RDGeom::Point2D computeNormal(const RDGeom::Point2D ¢er,
const RDGeom::Point2D &other) {
RDGeom::Point2D res = other - center;
res.normalize();
double tmp = res.x;
res.x = -res.y;
res.y = tmp;
return res;
}
//! computes the rotation angle between two vectors
/*!
\param center the common point
\param loc1 endpoint 1
\param loc2 endpoint 2
\return the angle (in radians)
*/
inline double computeAngle(const RDGeom::Point2D ¢er,
const RDGeom::Point2D &loc1,
const RDGeom::Point2D &loc2) {
RDGeom::Point2D v1 = loc1 - center;
RDGeom::Point2D v2 = loc2 - center;
return v1.angleTo(v2);
}
//! \brief pick the ring to embed first in a fused system
/*!
\param mol the molecule of interest
\param fusedRings the collection of the molecule's fused rings
\return the index of the ring with the least number of substitutions
*/
RDKIT_DEPICTOR_EXPORT int pickFirstRingToEmbed(const RDKit::ROMol &mol,
const RDKit::VECT_INT_VECT &fusedRings);
//! \brief find the rotatable bonds on the shortest path between two atoms
//! we will ignore ring atoms, and double bonds which are marked cis/trans
/*!
<b>Note</b> that rotatable in this context doesn't connect to the
standard chemical definition of a rotatable bond; we're just talking
about bonds than can be flipped in order to clean up the depiction.
\param mol the molecule of interest
\param aid1 index of the first atom
\param aid2 index of the second atom
\return a set of the indices of the rotatable bonds
*/
RDKIT_DEPICTOR_EXPORT RDKit::INT_VECT getRotatableBonds(const RDKit::ROMol &mol, unsigned int aid1,
unsigned int aid2);
//! \brief find all the rotatable bonds in a molecule
//! we will ignore ring atoms, and double bonds which are marked cis/trans
/*!
<b>Note</b> that rotatable in this context doesn't connect to the
standard chemical definition of a rotatable bond; we're just talking
about bonds than can be flipped in order to clean up the depiction.
\param mol the molecule of interest
\return a set of the indices of the rotatable bonds
*/
RDKIT_DEPICTOR_EXPORT RDKit::INT_VECT getAllRotatableBonds(const RDKit::ROMol &mol);
//! Get the ids of the atoms and bonds that are connected to aid
RDKIT_DEPICTOR_EXPORT void getNbrAtomAndBondIds(unsigned int aid, const RDKit::ROMol *mol,
RDKit::INT_VECT &aids, RDKit::INT_VECT &bids);
//! Find pairs of bonds that can be permuted at a non-ring degree 4 atom
/*!
This function will return only those pairs that cannot be
permuted by flipping a rotatble bond
D
|
b3
|
A-b1-B-b2-C
|
b4
|
E
For example in teh above situation on the pairs (b1, b3) and (b1, b4) will be
returned
All other permutations can be achieved via a rotatable bond flip.
ARGUMENTS:
\param center - location of the central atom
\param nbrBids - a vector (of length 4) containing the ids of the bonds to
the neighbors
\param nbrLocs - locations of the neighbors
*/
RDKIT_DEPICTOR_EXPORT INT_PAIR_VECT findBondsPairsToPermuteDeg4(const RDGeom::Point2D ¢er,
const RDKit::INT_VECT &nbrBids,
const VECT_C_POINT &nbrLocs);
//! returns the rank of the atom for determining draw order
inline int getAtomDepictRank(const RDKit::Atom *at) {
const int maxAtNum = 1000;
const int maxDeg = 100;
int anum = at->getAtomicNum();
anum = anum == 1 ? maxAtNum : anum; // favor non-hydrogen atoms
int deg = at->getDegree();
return maxDeg * anum + deg;
}
}
#endif
|