File: EEM.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (248 lines) | stat: -rw-r--r-- 9,631 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//
//  Copyright (c) 2017, Guillaume GODIN
//  inspired by Thomas Racek's EEM reference implementation
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// for build & set RDBASE! => export RDBASE=/Users/GVALMTGG/Github/rdkit_mine/

#include <GraphMol/RDKitBase.h>

#include "EEM.h"
#include "MolData3Ddescriptors.h"
#include <math.h>
#include <Eigen/Dense>
#include <Eigen/SVD>

using namespace Eigen;

namespace RDKit {
namespace Descriptors {
namespace {

struct EEM_arrays {
  unsigned int *Atomindex;
  unsigned int *EEMatomtype;
};

// Those Parameters change to adapted to the molecule dataset using the
// optimization method: The best parameters published in the NEEMP article
// (https://jcheminf.springeropen.com/articles/10.1186/s13321-016-0171-1), are
// CCD_gen_DE_RMSD_B3LYP_6311G_NPA.par from Additional file 6 was built using
// the larger dataset with B3LYP_6311G ab initio => 17769 molecules H 1, C 6, N
// 7, O 8, F 9, P 15, S 16, Cl 17, Br 35 Caution: Iodine is not in this training
// set of molecules!!!
const double kappa = 0.5125;
// 0   1      2   3   4   5   6       7      8      9     10  11  12  13  14  15
// 16    17    18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33 34
// 35
const double A1[] = {0.0,    2.5473, 0.0, 0.0,   0.0, 0.0, 2.7221, 2.9750,
                     3.1503, 2.9976, 0.0, 0.0,   0.0, 0.0, 0.0,    0.0,
                     2.6511, 2.7026, 0.0, 0.0,   0.0, 0.0, 0.0,    0.0,
                     0.0,    0.0,    0.0, 0.0,   0.0, 0.0, 0.0,    0.0,
                     0.0,    0.0,    0.0, 2.6263};
const double A2[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.7667, 2.8895, 3.0486,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.2933, 2.6471, 0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0};
const double A3[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6944, 3.0240, 0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0};
// 0   1      2   3   4   5   6       7      8      9     10  11  12  13  14  15
// 16    17     18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33
// 34 35
const double B1[] = {0.0,    1.1641, 0.0, 0.0,   0.0, 0.0, 0.6403, 0.9083,
                     1.0577, 0.9983, 0.0, 0.0,   0.0, 0.0, 0.0,    0.0,
                     0.4897, 1.1537, 0.0, 0.0,   0.0, 0.0, 0.0,    0.0,
                     0.0,    0.0,    0.0, 0.0,   0.0, 0.0, 0.0,    0.0,
                     0.0,    0.0,    0.0, 1.1105};
const double B2[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6513, 0.6647, 0.8410,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5759, 0.4512, 0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0};
const double B3[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6776, 1.4240, 0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0,
                     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,    0.0,    0.0};

/* simple Parameters trained using the small 500 molecules dataset.
const float kappa = 0.1960;

const float A1[] =
{0.0,2.3594,0.0,0.0,0.0,0.0,2.4541,2.5908,2.7130,0.0,0.0,0.0,0.0,0.0,0.0,0.0,2.3833};
const float A2[] =
{0.0,0.0,0.0,0.0,0.0,0.0,2.4726,2.5409,2.6766,0.0,0.0,0.0,0.0,0.0,0.0,0.0,2.4956};
const float A3[] =
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};

const float B1[] =
{0.0,0.5962,0.0,0.0,0.0,0.0,0.2591,0.3316,0.5028,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4564};
const float B2[] =
{0.0,0.0,0.0,0.0,0.0,0.0,0.2268,0.2319,0.4992,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1493};
const float B3[] =
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
*/

// function to retreive the atomtype value based on the "highest" (e.g. max)
// bond type of an atom potential improvement : in the original publication they
// don't have access to "Aromatic type" like in RDKit
unsigned int getAtomtype(const ROMol &mol, const RDKit::Atom *atom) {
  PRECONDITION(atom != nullptr, "bad atom argument")
  unsigned int t = 1;
  RDKit::ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = mol.getAtomBonds(atom);
  while (beg != end) {
    const Bond *bond = mol[*beg];
    double a = bond->getBondTypeAsDouble();
    if (a == 1.5) {
      a = 2.0;
    }
    t = std::max(t, (unsigned int)a);
    ++beg;
  }
  return t;
}

std::unique_ptr<double[]> getEEMMatrix(double *dist3D, unsigned int n,
                                       EEM_arrays EEMatoms) {
  PRECONDITION(dist3D != nullptr, "bad dist3D argument")
  int sizeArray = (n + 1) * (n + 1);
  double *EEM =
      new double[sizeArray]();  // declaration to set all elements to zeros!
  /* Fill the full n * n block */
  for (unsigned int i = 0; i < n; i++) {
    unsigned int t = EEMatoms.EEMatomtype[i];
    unsigned int idx = EEMatoms.Atomindex[i];
    double v = 0.0;
    if (t == 1) {
      v = B1[idx];
    }
    if (t == 2) {
      v = B2[idx];
    }
    if (t == 3) {
      v = B3[idx];
    }

    EEM[i * (n + 1) + i] = v;
    for (unsigned int j = i + 1; j < n; j++) {
      EEM[i * (n + 1) + j] = kappa / dist3D[i * n + j];
      EEM[j * (n + 1) + i] = EEM[i * (n + 1) + j];
    }
  }
  /* Fill last column & row */
  for (unsigned int i = 0; i < n; i++) {
    EEM[n * (n + 1) + i] = 1.0;   // column
    EEM[i * (n + 1) + n] = -1.0;  // row
  }
  return std::unique_ptr<double[]>(EEM);
}

std::unique_ptr<double[]> getBVector(const ROMol &mol, unsigned int n,
                                     const EEM_arrays &EEMatoms) {
  /* Fill vector b i.e. -A */
  double *b = new double[n + 1];
  for (unsigned int j = 0; j < n; j++) {
    unsigned int t = EEMatoms.EEMatomtype[j];
    unsigned int idx = EEMatoms.Atomindex[j];
    if (t == 1) {
      b[j] = -A1[idx];
    }
    if (t == 2) {
      b[j] = -A2[idx];
    }
    if (t == 3) {
      b[j] = -A3[idx];
    }
  }

  b[n] = MolOps::getFormalCharge(mol);  // sum of charges

  return std::unique_ptr<double[]>(b);
}

EEM_arrays calculate_EEM_parameters(ROMol mol, unsigned int n) {
  /* Fill vector b i.e. -A */
  unsigned int *a = new unsigned int[n];
  unsigned int *b = new unsigned int[n];

  for (unsigned int j = 0; j < n; j++) {
    b[j] = getAtomtype(mol, mol.getAtomWithIdx(j));
    a[j] = mol.getAtomWithIdx(j)->getAtomicNum();
  }

  return EEM_arrays{a, b};
}

/* Calculate charges for a particular kappa_data structure */
void calculate_charges(ROMol mol, double *dist3D, unsigned int numAtoms,
                       EEM_arrays EEMatoms, std::vector<double> &res) {
  std::unique_ptr<double[]> A = getEEMMatrix(dist3D, numAtoms, EEMatoms);
  std::unique_ptr<double[]> b = getBVector(mol, numAtoms, EEMatoms);

  MatrixXd AM = Map<MatrixXd>(A.get(), numAtoms + 1, numAtoms + 1);
  VectorXd bv = Map<VectorXd>(b.get(), numAtoms + 1);
  VectorXd Res(numAtoms + 1);

  FullPivLU<MatrixXd> lu(AM);
  Res = lu.solve(bv);

  for (unsigned int aix = 0; aix < numAtoms; aix++) {
    res[aix] = Res.data()[aix];
    mol.getAtomWithIdx(aix)->setProp("_EEMCharge", res[aix], true);
  }
}

void getEEMs(const ROMol &mol, std::vector<double> &result,
             unsigned int numAtoms, int confId) {
  // 3D distance matrix
  double *dist3D = MolOps::get3DDistanceMat(mol, confId, false, true);
  EEM_arrays EEMatoms = calculate_EEM_parameters(mol, numAtoms);

  result.clear();
  result.resize(numAtoms);
  calculate_charges(mol, dist3D, numAtoms, EEMatoms, result);
}

}  // end of anonymous namespace

void EEM(ROMol &mol, std::vector<double> &res, int confId) {
  PRECONDITION(mol.getNumConformers() >= 1, "molecule has no conformers")
  unsigned int numAtoms = mol.getNumAtoms();

  res.clear();
  res.resize(numAtoms);
  // copy molecule so that we can kekulize it
  RWMol wmol(mol);
  // kekulize is currenlty required but it could be remove if and only if:
  // we use "Aromatic type"  in RDKit retrain the model without Kekulize
  // that would be part of a future release if it's really important
  MolOps::Kekulize(wmol, true);

  getEEMs(wmol, res, numAtoms, confId);
}
}  // namespace Descriptors
}  // namespace RDKit