File: MolData3Ddescriptors.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (250 lines) | stat: -rw-r--r-- 7,388 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include <cstdlib>
#include <iostream>
#include "MolData3Ddescriptors.h"
#include <GraphMol/RDKitBase.h>
#include <boost/math/special_functions/round.hpp>

#include "GraphMol/PartialCharges/GasteigerCharges.h"
#include "GraphMol/PartialCharges/GasteigerParams.h"

using namespace std;

MolData3Ddescriptors::MolData3Ddescriptors() {}

std::vector<double> MolData3Ddescriptors::GetUn(int numAtoms) {
  std::vector<double> u(numAtoms, 1.0);

  return u;
}

std::vector<double> MolData3Ddescriptors::GetRelativeMW(
    const RDKit::ROMol& mol) {
  double* relativeMw = data3D.getMW();
  int numAtoms = mol.getNumAtoms();

  std::vector<double> pol(numAtoms, 0.0);
  for (int i = 0; i < numAtoms; ++i) {
    pol[i] = relativeMw[mol.getAtomWithIdx(i)->getAtomicNum() - 1];
  }
  return pol;
}

std::vector<double> MolData3Ddescriptors::GetRelativePol(
    const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  double* relativePol = data3D.getPOL();

  std::vector<double> pol(numAtoms, 0.0);
  for (int i = 0; i < numAtoms; ++i) {
    pol[i] = relativePol[mol.getAtomWithIdx(i)->getAtomicNum() - 1];
  }
  return pol;
}

std::vector<double> MolData3Ddescriptors::GetRelativeVdW(
    const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  double* relativeVdW = data3D.getVDW();

  std::vector<double> vdw(numAtoms, 0.0);
  for (int i = 0; i < numAtoms; ++i) {
    vdw[i] = relativeVdW[mol.getAtomWithIdx(i)->getAtomicNum() - 1];
  }
  return vdw;
}

std::vector<double> MolData3Ddescriptors::GetRelativeRcov(
    const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  double* rcov = data3D.getRCOV();

  std::vector<double> wroc(numAtoms, 0.0);
  for (int i = 0; i < numAtoms; ++i) {
    wroc[i] = rcov[mol.getAtomWithIdx(i)->getAtomicNum() - 1] / rcov[5];
  }
  return wroc;
}

std::vector<double> MolData3Ddescriptors::GetRelativeENeg(
    const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  double* relativeNeg = data3D.getNEG();

  std::vector<double> neg(numAtoms, 0.0);
  for (int i = 0; i < numAtoms; ++i) {
    neg[i] = relativeNeg[mol.getAtomWithIdx(i)->getAtomicNum() - 1];
  }
  return neg;
}

std::vector<double> MolData3Ddescriptors::GetRelativeIonPol(
    const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  double* absionpol = data3D.getIonPOL();

  std::vector<double> ionpols(numAtoms, 0.0);
  for (int i = 0; i < numAtoms; ++i) {
    ionpols[i] = absionpol[mol.getAtomWithIdx(i)->getAtomicNum() - 1];
  }
  return ionpols;
}

std::vector<double> MolData3Ddescriptors::GetCustomAtomProp(
      const RDKit::ROMol& mol, const std::string &customAtomPropName) {
    int numAtoms = mol.getNumAtoms();

    std::vector<double> customAtomarray(numAtoms, 0.0);
    for (int i = 0; i < numAtoms; ++i) {

        if (mol.getAtomWithIdx(i)->hasProp(customAtomPropName)) {
            customAtomarray[i] = mol.getAtomWithIdx(i)->getProp<double>(customAtomPropName);
        }
        else {
            customAtomarray[i] =1;
        }
    }
    return customAtomarray;
}

std::vector<double> MolData3Ddescriptors::GetCharges(const RDKit::ROMol& mol) {
  std::vector<double> charges(mol.getNumAtoms(), 0);
  // use 12 iterations... can be more
  RDKit::computeGasteigerCharges(mol, charges, 12, true);
  return charges;
}

int MolData3Ddescriptors::GetPrincipalQuantumNumber(int AtomicNum) {
  if (AtomicNum <= 2)
    return 1;
  else if (AtomicNum <= 10)
    return 2;
  else if (AtomicNum <= 18)
    return 3;
  else if (AtomicNum <= 36)
    return 4;
  else if (AtomicNum <= 54)
    return 5;
  else if (AtomicNum <= 86)
    return 6;
  else
    return 7;
}

std::vector<double> MolData3Ddescriptors::GetIState(const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  std::vector<double> Is(numAtoms, 1.0);  // values set to 1 for Hs

  for (int i = 0; i < numAtoms; ++i) {
    const RDKit::Atom* atom = mol.getAtomWithIdx(i);
    int atNum = atom->getAtomicNum();
    int degree = atom->getDegree();  // number of substituants (heavy of not?)
    if (degree > 0 && atNum > 1) {
      int h = atom->getTotalNumHs(
          true);  // caution getTotalNumHs(true) to count h !!!!
      int dv = RDKit::PeriodicTable::getTable()->getNouterElecs(atNum) -
               h;  // number of valence (explicit with Hs)
      int N = GetPrincipalQuantumNumber(atNum);  // principal quantum number
      double d = (double)degree - h;             // degree-h
      if (d > 0) {
        Is[i] =
            boost::math::round(1000 * (4.0 / (N * N) * dv + 1.0) / d) / 1000;
      }
    }
  }

  return Is;
}

std::vector<double> MolData3Ddescriptors::GetIStateDrag(
    const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();
  std::vector<double> Is(numAtoms, 1.0);

  for (int i = 0; i < numAtoms; ++i) {
    const RDKit::Atom* atom = mol.getAtomWithIdx(i);
    int atNum = atom->getAtomicNum();
    int degree = atom->getDegree();  // number of substituants
    if (degree > 0 && atNum > 1) {
      int h = atom->getTotalNumHs(true);
      int Zv = RDKit::PeriodicTable::getTable()->getNouterElecs(
          atNum);                  // number of valence (explicit with Hs)
      double dv = (double)Zv - h;  // number of valence electron without Hs
      int N = GetPrincipalQuantumNumber(atNum);  // principal quantum number
      double d = (double)degree - h;             // degree-h
      if (d > 0) {
        Is[i] =
            boost::math::round(1000 * (4.0 / (N * N) * dv + 1.0) / d) / 1000;
      }
    }
  }

  return Is;
}

// adaptation from EState.py
// we need the Is value only there
std::vector<double> MolData3Ddescriptors::GetEState(const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();

  std::vector<double> Is = GetIState(mol);

  double tmp, p;
  double* dist = RDKit::MolOps::getDistanceMat(mol, false, false);
  std::vector<double> accum(numAtoms, 0.0);

  for (int i = 0; i < numAtoms; i++) {
    for (int j = i + 1; j < numAtoms; j++) {
      p = dist[i * numAtoms + j] + 1;
      if (p < 1e6) {
        tmp = (Is[i] - Is[j]) / (p * p);
        accum[i] += tmp;
        accum[j] -= tmp;
      }
    }
  }

  for (int i = 0; i < numAtoms; i++) {
    Is[i] += accum[i];
  }

  return Is;
}

// modification of previous code to follow documentation from Padel code
std::vector<double> MolData3Ddescriptors::GetEState2(const RDKit::ROMol& mol) {
  int numAtoms = mol.getNumAtoms();

  std::vector<double> Si = GetIState(mol);

  // in WHIM definition it's write:
  double tmp, p, d;
  double* dist = RDKit::MolOps::getDistanceMat(mol, false, false);
  std::vector<double> accum(numAtoms, 0.0);

  for (int i = 0; i < numAtoms; i++) {
    for (int j = i + 1; j < numAtoms; j++) {
      d = dist[i * numAtoms + j];
      p = dist[i * numAtoms + j] + 1;
      if (d == 1) {
        tmp = (Si[i] - Si[j]) / (p * p);
        accum[i] += tmp;
        accum[j] -= tmp;
      }
    }
  }

  // add the Accum to the Si
  // WHIM Si values
  // electrotopological indices are scaled thus: Si'=Si + 7 => Si' > 0
  // In this case, only the nonhydrogen atoms are considered,
  // and the atomic electrotopological charge of each atom depends on its atom
  // neighbor.
  // So we should not use all the terms in the sum but only Adj matrix cases!

  // Correct the Si adding the rescaling parameter for WHIM only
  for (int i = 0; i < numAtoms; i++) {
    Si[i] += accum[i] + 7.0;
  }

  return Si;
}